Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 104))

Abstract

Despite the discussions in other sections of this book on the final causes of cell death, this chapter will analyse whether any correlation exists during ischemia between the cellular energetic situation and disturbances of functions, metabolism and structure of myocardial cells. In this context, the question arises as to whether a critical cellular ATP level marks the transgression from a living to a dead cell, marking a ‘point of no return’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reimer KA, Jennings RB (1986) Myocardial Ischemia, Hypoxia and Infarction. In: HA Fozzard et al. (ed) The Heart and Cardiovascular System. New York, p 1133

    Google Scholar 

  2. Opitz E, Schneider M (1950) Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Ergebn Physiol 46: 126

    Google Scholar 

  3. Schneider M (1958) Über die Wiederbelebung nach Kreislaufunterbrechung. Thoraxchirurgie 6:95

    PubMed  CAS  Google Scholar 

  4. Schneider M (1964) Die Wiederbelebungszeit verschiedener Organe nach Ischämie. Langenbecks Arch Klin Chir 308: 252

    Article  CAS  Google Scholar 

  5. Kreuzer H, Schoeppe W (1963) Der Myokarddruck bei veränderter Koronardurchblutung und bei Ischämie. Pflügers Arch ges Physiol 278: 209

    Article  CAS  Google Scholar 

  6. Prinzmetal M, Schwarzt LL, Corday E, Spritzler R, Bergmann HC, Krüger HE (1949) Studies on the coronary circulation. VI. Loss of cardiac contractility after coronary artery occlusion. Ann intern Med 31: 429

    PubMed  CAS  Google Scholar 

  7. Sayen JJ, Sheldon WF, Peirce G, Kuo PT (1958) Polarographic oxygen in experimental acute regional ischemia of the left ventricle. Circulat Res 6: 779

    PubMed  CAS  Google Scholar 

  8. Sayen JJ, Sheldon WF, Peirce G, Kou PT (1954) Motion picture studies of ventricular muscle dynamics in experimental localized ischemia, correlated with myocardial oxygen tension and electrocardiograms. J Clin Invest 33: 962

    Google Scholar 

  9. Tennant R, Wiggers CJ (1935) The effect of coronary occlusion on myocardial contraction. Amer J Physiol 112: 351

    Google Scholar 

  10. Bretschneider HJ (1964) Überlebenszeit und Wiederbelungszeit des Herzens bei Normo-und Hypothermie. Verh Dtsch Ges Kreislaufforsch 30: 11

    PubMed  CAS  Google Scholar 

  11. Fabel H, Lübbers DW, Rybak R (1964) Die Bestimmung des Myoglobingehaltes und des kritischen Sauerstoffdruckes am schlagenden Kaninchenherzen ‘in situ’. Pflügers Arch ges Physiol 279: R32

    Google Scholar 

  12. Lübbers DW (1968) Intercapillärer O2-Transport und intracelluläre Sauerstoffkonzentration. In: Biochemie des Sauerstoffs. 19. Colloquium der Gesellschaft für Biologischie Chemie (Berlin — Heidelberg — New York) S67

    Google Scholar 

  13. Sugar O, Gerard RW (1938) Anoxia and brain potentials. J Neurophysiol 1: 558

    Google Scholar 

  14. Serruys PW, Meester GT (eds) (1986) Coronary Angioplasty: A controlled model for ischemia. Dordrecht — Boston — Lancaster

    Google Scholar 

  15. Porter WT (1894) On the ligation of the coronary arteries. J Physiol 15: 121

    Google Scholar 

  16. Cooley DA, Reul GJ and Wukasch DC (1972) Ischemic contracture of the heart:’ stone heart.’ Am J Cardiol 29: 575

    Article  PubMed  CAS  Google Scholar 

  17. Rusch H (1898) Experimentelle Studien über Ernährung des isolierten Säugerherzens. Pflügers Arch ges Physiol 7: 533

    Google Scholar 

  18. Blumgart AL, Gittigan DR, Schlesinger MJ (1941) Experimental studies on the effect of temporary occlusion of coronary arteries. II. The production of myocardial infarction. Am Heart J 22: 374

    Article  Google Scholar 

  19. Jennings RB, Baum JH, Herdson PB (1965) Fine structural changes in myocardial ischemic injury. Arch Path 79: 135

    PubMed  CAS  Google Scholar 

  20. Milnes RF, Woude RV, Sloan H (1958) Extended asystole. Arch Surg 77: 13

    CAS  Google Scholar 

  21. Spieckermann PG, Überlebens-und Wiederbelebungszeit des Herzens. Anaesthesiology and Resuscitation Vol 66. Berlin: Springer

    Google Scholar 

  22. Kübler W and Spieckermann PG (1970) Regulation of glycolysis in the ischemic and anoxic myocardium. J Mol Cell Cardiol 1: 351

    Article  PubMed  Google Scholar 

  23. Eggleton CP and Eggleton P (1929) A method of estimating phosphagen and some other phosphorous compounds in muscle tissue. J Physiol 68: 193

    PubMed  CAS  Google Scholar 

  24. Hohorst HJ, Reim M and Bartels H (1962) Studies on the creatine kinase equilibrium in muscle and the significance of ATP and ADP levels. Biochem Biophys Res Commun 7: 142

    Article  PubMed  CAS  Google Scholar 

  25. Hübner G (1971) Electron microscopic investigation of cardioplegia: Electron microscopy of various forms of cardiac arrest in correlation with myocardial function. Methods Archiev Exp Pathol 5: 518

    Google Scholar 

  26. Kübier W, Grebe D, Orellano LE, Spieckermann PG and Bretschneider HJ (1968) Zur Bewertung des Gewebsgehaltes der energiereichen Phosphate für die Pathogenese der Herzinsuffizienz In: Reindell H, Keul J, and Doll E (eds) Herzinsuffizienz: Pathophysiologie und Klinik. Stuttgart: Thieme p 226

    Google Scholar 

  27. Braasch W, Gudbjarnason S, Puri PS, Ravens KG and Bing RJ (1968) Early changes in energy metabolism in the myocardium following coronary artery occlusion in anesthetized dogs. Circ Res 23: 429

    PubMed  CAS  Google Scholar 

  28. Gudbjernason S, Mathes P, Ravens KG (1970) Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1: 325

    Article  Google Scholar 

  29. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1977) Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92: 187

    Google Scholar 

  30. Reibel DK, Rovetto MJ (1979) Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am J Physiol 237: H247

    PubMed  CAS  Google Scholar 

  31. Isselhard W (1968) Einfluß von Prenylamin auf Herz-und Gehirnstoffwechsel und auf die Myokardfunktion. In: Moser K, Lujf A (eds) Beta-Rezeptorenblockade in Klinik und Experiment. Wien p 87

    Google Scholar 

  32. Kammermeier H (1964) Verhalten von Adenin-Nucleotiden und Kreatinphosphat im Herzmuskel bei funktioneller Erholung nach länger dauernder Asphyxie. Verh dtsch Ges Kreisl-Forsch 30: 206

    CAS  Google Scholar 

  33. Jennings RB, Reimer KA (1981) Lethal myocardial injury. Am J Pathol 102: 241

    PubMed  CAS  Google Scholar 

  34. Grinwald PM, Hearse DJ, Segal MB (1980) A possible mechanism of glycolytic impairment after adenosine triphosphate depletion in the perfused rat heart. J Physiol 301: 337

    PubMed  CAS  Google Scholar 

  35. Neely JR, Grotjohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55: 816

    PubMed  CAS  Google Scholar 

  36. Poole-Wilson PA (1984) What causes cell death. In: Hearse DJ, Yellon DM (eds) Therapeutic approaches to myocardial infarct size limitation. New York p 43

    Google Scholar 

  37. Bretschneider HJ, Gebhard MM, Preusse CJ (1984) Cardioplegia, Principles and Problems. In: Sperelakis N (ed) Physiology and Pathophysiology of the heart. Boston

    Google Scholar 

  38. Isselhard W, Mäurer W, Stemmel W, Krebs J, Schmitz H, Neuhof H, Esser A (1970) Stoffwechsel des Kaninchenherzens in situ während Asphyxie und in der postasphyktischen Erholung. Pflügers Arch ges Physiol 316: 164

    Article  CAS  Google Scholar 

  39. Kammermeier H (1964) Verhalten von Adeninnucleotiden und Kreatinphosphat im Herzmuskel bei funktioneller Erholung nach länger dauernder Asphyxie. Verh dtsch Ges Kreisl-Forsch 30: 206

    CAS  Google Scholar 

  40. De Boer LWV, Ingwall JS, Kloner RA, Braunwald E (1989) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci (USA) 77: 5471

    Article  Google Scholar 

  41. Zimmer HG, Ibel H (1984) Ribose accelerates the repletion of the ATP pool during recovery from reversible ischemia of the rat myocardium. J Mol Cell Cardiol 16: 863

    Article  PubMed  CAS  Google Scholar 

  42. Humphrey SM, Holiss DG, Seelye RN (1985) Myocardial adenine pool depletion and recovery of mechanical function following ischemia. Am J Physiol 248: H644

    PubMed  CAS  Google Scholar 

  43. Zimmer HG, Trendelenburg C, Kammermeier H, Gerlach E (1973) De novo synthesis of myocardial adenine nucleotides in the rat. Circ Res 32: 635

    PubMed  CAS  Google Scholar 

  44. Piper HM, Schwartz P, Hütter JF, Spieckermann PG (1984) Energy metabolism and enzyme release of cultured adult rat heart muscle cells during anoxia. J Mol Cell Cardiol 16: 995

    Article  PubMed  CAS  Google Scholar 

  45. Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG (1985) Development of ischemia induced damage in defined mitochondrial subpopulations. J Molec Cell Cardiol 17: 125

    Google Scholar 

  46. Gettes LS (1986) Effect of ischemia on cardiac electrophysiology. In: Fozzard HA et al. (ed) The heart and cardiovascular system. New York p 1317

    Google Scholar 

  47. Holubarsch C, Alpert NR, Goulette R, Mulieri LA (1982) Heat production during hypoxic contracture of rat myocardium. Circ Res 51: 777

    PubMed  CAS  Google Scholar 

  48. Lewis MJ, Housmans PR, Claes VA, Brutsaert DL, Henderson AH (1980) Myocardial stiffness during hypoxic and reoxygenation contracture. Cardiovasc Res 14: 339

    Article  PubMed  CAS  Google Scholar 

  49. Ventura-Clapier R, Vassort G (1981) Rigor tension during metabolic and ionic rises in resting tension in rat heart. J Mol Cell Cardiol 13: 551

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Spieckermann, P.G. (1990). The critical ATP threshold hypothesis. In: Piper, H.M. (eds) Pathophysiology of Severe Ischemic Myocardial Injury. Developments in Cardiovascular Medicine, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0475-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0475-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0459-3

  • Online ISBN: 978-94-009-0475-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics