Skip to main content

Release and effects of catecholamines in myocardial ischemia

  • Chapter
Pathophysiology of Severe Ischemic Myocardial Injury

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 104))

Summary

Clinical and experimental studies suggest that in myocardial ischemia the sympathetic activity of the heart is closely related to the progression of cell injury and the incidence of malignant arrhythmias. Adrenergic stimulation of the ischemic myocardium is caused by increased local noradrenaline concentrations in the heart, while the plasma catecholamine levels are of minor relevance. In early ischemia, efferent sympathetic nerves are activated due to pain, anxiety, and fall in cardiac output or arterial blood pressure. However, excessive accumulation of noradrenaline is prevented since adenosine, formed in the ischemic myocardium, effectively suppresses the exocytosis of noradrenaline, and because released noradrenaline is rapidly removed as long as catecholamine re-uptake is functional.

With progression of ischemia to more than 10 minutes, however, the myocardium is no longer protected against excess catecholamine accumulation in the interstitial space since local metabolic release mechanisms become increasingly important. This release, which is independent from central sympathetic activity and from extracellular calcium, occurs in two steps: first, noradrenaline escapes from its intracellular storage vesicles and cumulates in the cytoplasma of the neuron. In a second, rate-limiting step, noradrenaline is transported accross the plasma membrane into the interstitial space, using the neuronal uptake carrier in reverse of its normal transport direction. The latter step requires increased intraneuronal sodium concentrations since noradrenaline leaves the nerve cell by a co-transport with the sodium ion.

Despite excessive interstitial noradrenaline concentrations, capable of rapidly desensitizing the ß-adrenergic receptor under normoxic conditions, myocardial ischemia induces a persistent 30% increase of ß-adrenergic receptor number.

The increased ß-receptor number causes enhanced sensitivity of the heart to catecholamines in the early phase of ischemia. In addition, the effector enzyme adenylatecyclase becomes temporarily supersensitive, followed by a rapid inactivation of the enzyme and its coupling protein Gs. In the αadrenergic system the receptor number at the cell surface is not consistently elevated and receptor-independent mechanisms lead to a self-potentiating sensitization of the post-receptor components of the α1-adrenergic system.

Evidence for the significance of adrenergic mechanisms in ischemiainduced myocardial injury is derived from studies with acute and chronic sympathetic denervation prior to ischemia and from interventions using antiadrenergic agents. It was concluded from these studies that local metabolic, rather than centrally induced noradrenaline release is critically involved in progressive ischemic cell damage and the occurrence of ventricullar fibrillation in early ischemia. As a consequence of local metabolic catecholamine release, extracellular noradrenaline reaches 100–1000 times the normal plasma concentration within 20 minutes of ischemia. The deleterious combination of these extremely high noradrenaline concentrations with at least a temporarily enhanced responsiveness of the tissue to catecholamines is thought to accelerate the propagation of the wavefront of irreversible cell damage in the ischemic myocardium. Moreover, the heterogeneous distribution of catecholamine excess within the heart is considered to promote malignant arrhythmias by unmasking and enhancing electrophysiological disturbances in early ischemia such as automaticity and inhomogeneities in conduction and refractoriness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coir PB, Gillis RA (1978) Autonomic neural influences on the dysrhythmias resulting from myocardial infarction. Circ Res 43: 1–9

    Google Scholar 

  2. Malliani A, Schwartz PJ, Zanchetti A (1980) Neural mechanisms in life-threatening arrhythmias. Am Heart J 100: 705–715

    PubMed  CAS  Google Scholar 

  3. Ceremuzynski L (1981) Homoral and metabolic reactions evoked by acute myocardial infarction. Circ Res 48: 767–776

    PubMed  CAS  Google Scholar 

  4. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17: 291–306

    PubMed  CAS  Google Scholar 

  5. Corr PB, Yamada KA, Witkowski FX (1986) Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan HE (eds) Heart and Cardiovascular Systems. Raven Press. NY 1343–1403

    Google Scholar 

  6. Janse MJ (1989) Why is increased adrenergic activity arrhythmogenic? In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 353–363

    Google Scholar 

  7. Gazes PC, Richardson JA, Woods EF (1959) Plasma catecholamine concentrations in myocardial infarction and angina pectoris. Circulation 19: 657–661

    PubMed  CAS  Google Scholar 

  8. Griffiths J, Leung F (1971) The sequential estimation of plasma catecholamines and whole blood histamine in myocardial infarction. Am Heart J 82: 171–179

    PubMed  CAS  Google Scholar 

  9. Siggers DC, Salter C, Fluck DC (1971) Serial plasma adrenaline and noradrenaline levels in myocardial infarction using a new double isotope technique. Br Heart J 33: 878–883

    PubMed  CAS  Google Scholar 

  10. Videbaek J, Christensen NJ, Sterndorff B (1972) Serial determination of plasma catecholamines in myocardial infarction. Circulation 46: 846–855

    PubMed  CAS  Google Scholar 

  11. Strange RC, Rowe MJ, Oliver MF (1978) Lack of relation between venous plasma total catecholamine concentration and ventricular arrhythmias after acute myocardial infarction. Bri Med J 2: 921–922

    CAS  Google Scholar 

  12. Benedict CR, Graham-Smith DG (1979) Plasma adrenaline and noradrenaline concentrations and dopamine-β-hydroxylase activity in myocardial infarction with and without cardiogenic shock. Br Heart J 42: 214–220

    PubMed  CAS  Google Scholar 

  13. Nadeau RA, de Champlain J (1979) Plasma catecholamines in acute myocardial infarction. Am Heart J 98: 548–554

    PubMed  CAS  Google Scholar 

  14. Karlsberg RP, Cryer PE, Roberts R (1981) Serial plasma catecholamine response early in the course of clinical acute myocardial infarction: Relationship to infarct extent and mortality. Am Heart J 102: 24–29

    PubMed  CAS  Google Scholar 

  15. Bertel O, Bühler FR, Baitsch G, Ritz R, Burkart F (1982) Plasma adrenaline and noradrenaline in patients with acute myocardial infarction. Relationship to ventricular arrhythmias of varying severity. Chest 82: 64–68

    PubMed  CAS  Google Scholar 

  16. Schömig A, Ness G, Mayer E, Katus H, Dietz R (1984) Sympathetic activity in patients with acute myocardial infarction before and after intracoronary thrombolytic therapy. Eur Heart J (Suppl 1)5: 39 (abstract)

    Google Scholar 

  17. Karlsberg RP, Penkoske PA, Cryer PE, Corr PB, Roberts R (1979) Rapid activation of the sympathetic nervous system following coronary artery occlusion: Relationship to infarct size, site, and haemodynamic impact. Cardiovasc Res 13: 523–531

    PubMed  CAS  Google Scholar 

  18. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA (1983) Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1: 1047–1055

    PubMed  CAS  Google Scholar 

  19. Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217: 703–709

    PubMed  CAS  Google Scholar 

  20. Esler M, Jennings G, Körner P, Blombery P, Sacharias N, Leonard P (1984) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247: E21–E28

    PubMed  CAS  Google Scholar 

  21. Uchida Y, Murao S (1974) Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Pharmacol 226: 1094–1099

    CAS  Google Scholar 

  22. Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL (1978) Referential distribution of inhibitory cardiac receptors with vagal afférents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 43: 512–519

    PubMed  CAS  Google Scholar 

  23. Dart AM, Schömig A, Dietz R, Mayer E, Kubier W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part B: Effect of sympathetic nerve stimulation. Circ Res 55: 702–706

    PubMed  CAS  Google Scholar 

  24. Richardt G, Waas W, Kranzhöfer R, Mayer E, Schömig A (1987) Adenosine inhibits exocytotic release of endogenous noradrenaline in the rat heart: A protective mechanism in early myocardial ischemia. Circ Res 61: 117–123

    PubMed  CAS  Google Scholar 

  25. Dart AM (1989) Influence of myocardial ischaemia on exocytotic noradrenaline release. In: Brachmann J, Schömig A (eds) Adrenergetic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 34–43

    Google Scholar 

  26. Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Bri Pharmacol 41: 571–591

    CAS  Google Scholar 

  27. Sammet S, Graefe KH (1979) Kinetic analysis of the interaction between noradrenaline and Na+ in neuronal uptake: Kinetik evidence for co-transport. Naunyn-Schmiedeberg’s Arch Pharmacol 309: 99–107

    CAS  Google Scholar 

  28. Schömig A, Dietz R, Strasser R, Dart AM, Kübler W (1982) Noradrenaline release and inactivation in myocardial ischemia. In: Caldarera CM, Harris P (eds) Advances in Studies on Heart Metabolism CLUEB, Bologna, 239–244

    Google Scholar 

  29. Schömig A (1989) Increase of cardiac and systemic catecholamines in myocardial ischemia. In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 61–77

    Google Scholar 

  30. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A. Locally mediated release. Circ Res 55: 689–701

    PubMed  Google Scholar 

  31. Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124

    PubMed  CAS  Google Scholar 

  32. Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32: 337–362

    Google Scholar 

  33. Baker PF, Knight DE (1978) Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature (Lond) 276: 620–622

    CAS  Google Scholar 

  34. Knight DE, von Grafenstein H, Maconochie DJ (1989) Intracellular requirements for exocytotic noradrenaline release. In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 3–20

    Google Scholar 

  35. Wollenberger A, Shahab L (1965) Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature 207: 88–89

    PubMed  CAS  Google Scholar 

  36. Shahab L, Wollenberger A, Haase M, Schiller U (1969) Noradrenalinabgabe aus dem Hunderhezen nach vorübergehender Okklusion einer Koronararterie. Acta Biol Med Germ 22: 135–143

    PubMed  CAS  Google Scholar 

  37. Rochette L, Didier J-P, Moreau D, Bralet J (1980) Effect of substrate on release of myocardial norepinephrine and ventricular arrhythmias following reperfusion of the ischemic isolated working rat heart. J Cardiovasc Pharmacol 2: 267–279

    PubMed  CAS  Google Scholar 

  38. Abrahamsson T, Almgren O, Carlsson L (1983) Ischemia-induced noradrenaline release in the isolated rat heart: Influence of perfusion, substrate, and duration of ischemia. J Mol Cell Cardiol 15: 821–830

    PubMed  CAS  Google Scholar 

  39. Carlsson L, Abrahamsson T, Almgren O (1985) Local release of myocardial norepinephrine during acute ischemia: An experimental study in the isolated perfused rat heart. J Cardiovasc Pharmacol 7: 791–798

    PubMed  CAS  Google Scholar 

  40. Hirche HJ, Franz C, Bös L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12: 579–593

    PubMed  CAS  Google Scholar 

  41. McGrath BP, Lim SP, Leversha L, Shanahan A (1981) Myocardial and peripherial catecholamine responses to acute coronary artery constriction before and after propranolol treatment in the anaesthetised dog. Cardiovasc Res 15: 28–34

    PubMed  CAS  Google Scholar 

  42. Forfar JC, Riemersma RA, Oliver MF (1983) Alpha-adrenoceptor control of norepinephrine release from acutely ischemic myocardium: Effects of blood flow, arrhythmias, and regional conduction delay. J Cardiovasc Pharmacol 5: 752–759

    PubMed  CAS  Google Scholar 

  43. Schömig A (1988) Adrenergic mechanisms in myocardial infarction: Cardiac and systemic catecholamine release. J Cardiovasc Pharmacol 12(Suppl 1): 1–7

    Google Scholar 

  44. Holmgren S, Abrahamsson T, Almgren O, Eriksson BM (1981) Effect of ischaemia on the adrenergic neurons of the rat heart: A fluorescence histochemical and biochemical study. Cardiovasc Res 15: 680–689

    PubMed  CAS  Google Scholar 

  45. Muntz KH, Hagler HK, Boulas HJ, Buja LM (1984) Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Pathol 114: 64–78

    PubMed  CAS  Google Scholar 

  46. Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: Fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80: 18–26

    PubMed  CAS  Google Scholar 

  47. Schömig A, Dart AM, Dietz R, Kübler W, Mayer E (1985) Paradoxical role of neuronal uptake for the locally mediated release of endogenous noradrenaline in the ischemic myocardium. J Cardiovasc Pharmacol 7(Suppl 5): 40–44

    Google Scholar 

  48. Lindmar R, Löffelholz K (1974) Neuronal and extraneuronal uptake and efflux of catecholamines in the isolated rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 284: 63–92

    CAS  Google Scholar 

  49. Dart AM, Riemersma RA (1988) Origins of endogenous noradrenaline overflow during reperfusion of the ischaemic rat heart. Clin Sci 74: 269–274

    PubMed  CAS  Google Scholar 

  50. Waldenstrom AP, Hjalmarson AC, Thornell L (1978) A possible role of noradrenaline in the development of myocardial infarction. Am Heart J 95: 43–51

    PubMed  CAS  Google Scholar 

  51. Rubin RP (1970) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev 22: 389–428

    PubMed  CAS  Google Scholar 

  52. Haass M, Cheng B, Richardt G, Lang RE, Schömig A (1989) Characterization and presynaptic modulation of stimulation-evoked exocytotic co-release of noradrenaline and neuropeptide Y in guinea pig heart. Naunyn-Schmiedeberg’s Arch Pharmacol 339: 71–78

    CAS  Google Scholar 

  53. Mack F, Bönisch H (1979) Dissociation constants and lipophilicity of catecholamines and related compounds. Naunyn-Schmiedeberg’s Arch Pharmacol 310: 1–9

    CAS  Google Scholar 

  54. Trendelenburg U, Bönisch H, Graefe KH, Henseling M (1980) The rate constants for the efflux of metabolites of catecholamines and phenethylamines. Pharmacol Rev 31: 179–203

    Google Scholar 

  55. Paton DM (1973) Mechanism of efflux of noradrenaline from adrenergic nerves in rabbit atria. Br J Pharmacol 49: 614–627

    PubMed  CAS  Google Scholar 

  56. Raiteri M, del Carmine R, Bertollini A, Levi G (1977) Effect of desmethylimipramine on the release of 3H-norepinephrine induced by various agents in hypothalamic synaptosomes. Mol Pharmacol 13: 746–758

    PubMed  CAS  Google Scholar 

  57. Ross SB, Kelder D (1979) Release of 3H-noradrenaline from the rat vas deferens under various in vitro conditions. Acta Physiol Scand 105: 338–349

    PubMed  CAS  Google Scholar 

  58. Graefe KH, Fuchs G (1979) On the mechanism of neuronal efflux of axoplasmatic 3H-(-)noradrenaline. In: Usdin E, Kopin IJ, Barchas J (eds) Basic and Clinical Frontiers, Vol 1. Pergamon Press, New York, Oxford, Toronto, Sydney, Frankfurt, Paris pp 268–270

    Google Scholar 

  59. Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199: 649–661

    PubMed  CAS  Google Scholar 

  60. Dart AM, Dietz R, Kübier W, Schömig A, Strasser R (1983) Effects of cocaine and desipramine on the neurally evoked overflow of endogenous noradrenaline from the rat heart. Br J Pharmacol 79: 71–74

    PubMed  CAS  Google Scholar 

  61. Iversen LL, Salt PJ (1970) Inhibition of catecholamine uptake2 by steroids in the isolated rat heart. Br J Pharmacol 40: 528–530

    PubMed  CAS  Google Scholar 

  62. Nayler WG, Sturrock WJ (1984) An inhibitory effect of verapamil and diltiazem on the release of noradrenaline from ischaemic and reperfused hearts. J Mol Cell Cardiol 16: 331–344

    PubMed  CAS  Google Scholar 

  63. Nayler WG, Sturrock WJ (1985) Inhibitory effect of calcium antagonists on the depletion of cardiac norepinephrine during postischemic reperfusion. J Cardiovasc Pharmacol 7: 581–587

    PubMed  CAS  Google Scholar 

  64. Richardt G, Schäfer H, Kanzler S, Haass M, Schömig A (1989) Einfluß von Kalzium-Antagonisten auf die kardiale Katecholaminfreisetzung bei Normoxie und Ischämie. Z Kardiol 78(Suppl 1): 86 (abstract)

    Google Scholar 

  65. Franco-Cereceda A, Saria A, Lundberg JM (1989) Differential release of calcitonin generelated peptide and neuropeptide Y from the isolated heart by capsaicin, ischaemia, nicotine, bradykinin and ouabain. Acta Physiol Scand 135: 173–187

    PubMed  CAS  Google Scholar 

  66. Schömig A, Fischer S, Kurz Th, Richardt G, Schömig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: Mechanism and metabolic requirements. Circ Res 60: 194–205

    PubMed  Google Scholar 

  67. Dart AM, Riemersma RA, Schömig A, Ungar A (1987) Metabolic requirements for release of endogenous noradrenaline during myocardial ischaemia and anoxia. Br J Pharmacol 90: 43–50

    PubMed  CAS  Google Scholar 

  68. Carlsson L (1988) A crucial role of ongoing anaerobic glycolysis in attenuating acute ischemia-induced release of myocardial noradrenaline. J Mol Cell Cardiol 20: 247–253

    PubMed  CAS  Google Scholar 

  69. Schömig A, Kurz Th, Richardt G, Schömig E (1988) Neuronal sodium homoeostasis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart. Circ Res 63: 214–226

    PubMed  Google Scholar 

  70. Beers MF, Carty SE, Johnson RG, Scarpa A (1982) H+-ATPase and catecholamine transport in chromaffin granules. Ann NY Acad Sci 402: 116–133

    PubMed  CAS  Google Scholar 

  71. Phillips JH (1982) Dynamic aspects of chromaffin granule structure. Neurosci 7: 1595–1609

    CAS  Google Scholar 

  72. Winkler H, Apps DK, Fischer-Colbrie R (1986) The molecular function of adrenal chromaffin granules: Established facts and unresolved topics. Neuroscience 18: 261–290

    PubMed  CAS  Google Scholar 

  73. von Euler US, Lishajko F (1963) Effect of adenine nucleotides on catecholamine release and uptake in isolated adrenergic nerve granules. Acta Physiol Scand 59: 454–461

    CAS  Google Scholar 

  74. Toll L, Howard BD (1978) Role of Mg2+-ATPase and pH gradient in the storage of catecholamines in synaptic vesicles. Biochemistry 17: 2517–2523

    PubMed  CAS  Google Scholar 

  75. Fowler CJ, Oreland L (1980) The nature of the substrate-selective interaction between rat liver mitochondrial monoamine oxidase and oxygen. Biochem Pharmacol 29: 2225–2233

    PubMed  CAS  Google Scholar 

  76. Graefe KH, Zeitner CJ, Fuchs G, Keller B (1984) Role played by sodium in the membrane transport of 3H-noradrenaline across the axonal membrane of noradrenergic neurones. In: Fleming WW (ed) Neuronal and extraneuronal Events in Autonomic Pharmacology. Raven Press, New York 51–62

    Google Scholar 

  77. Stute N, Trendelenburg U (1984) The outward transport of axoplasmic noradrenaline induced by a rise of the sodium concentration in the adrenergic nerve endings of the rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 327: 124–132

    CAS  Google Scholar 

  78. Trendelenburg U (1989) The dynamics of adrenergic nerve endings. In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 53–60

    Google Scholar 

  79. Graefe KH (1989) On the mechanism of non-exocytotic release of noradrenaline from noradrenergic neurones. In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 44–52

    Google Scholar 

  80. Fiolet JWT, Baartscheer A, Schumacher CA, Coronel R, Welle HF (1984) The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. J Mol Cell Cardiol 16: 1023–1036

    PubMed  CAS  Google Scholar 

  81. Balschi JA, Frazer JC, Fetters JK, Clarke K, Springer CS, Smith TW, Ingwall JS (1985) Shift reagent and Na-23 nuclear magnetic resonance discriminates between extra and intracellular sodium pools in ischemic heart. Circulation 72(Suppl III): 355 (abstract)

    Google Scholar 

  82. Lazdunski M, Freiin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17: 1029–1042

    PubMed  CAS  Google Scholar 

  83. Aronson PS (1985) Kinetic properties of the plasma membrane Na+-H+ exchanger. Ann Rev Physiol 47: 545–560

    CAS  Google Scholar 

  84. Vigne P, Frelin C, Cragoe Jr EJ, Lazdunski M (1983) Ethylisopropylamiloride: A new and highly potent derivative of amiloride for the inhibition of the Na+-H+ exchange system in various cell types. Biochem Biophys Res Commun 116: 86–90

    PubMed  CAS  Google Scholar 

  85. Harden TK (1983) Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35: 5–32

    PubMed  CAS  Google Scholar 

  86. Sibley DR, Lefkowitz RJ (1986) Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317: 124–129

    Google Scholar 

  87. Strasser RH (1988) Phosphorylation of the beta-adrenergic receptor: Mechanisms of desensitization. In: Moudgil VK (ed) Receptor Phosphorylation. CRC Press, Boca Ration, FL p 199–226

    Google Scholar 

  88. Perkins JP (1983) Desensitization of the response of adenylate cyclase to catecholamines. Curr Top Membr Transp 18: 85–108

    CAS  Google Scholar 

  89. Strasser RH, Stiles GL, Lefkowitz RJ (1984) Translocation and uncoupling of the beta-adrenergic receptor in rat lung after catecholamine promoted desensitization in vivo. Endocrinology 115: 1392–1400

    PubMed  CAS  Google Scholar 

  90. Strasser RH, Krimmer J, Marquetant R (1988) Regulation of ß-adrenergic receptors: Impaired desensitization in myocardial ischemia. J Cardiovasc Pharmacol 12(Suppl 1): 15–24

    Google Scholar 

  91. Mukherjee A, Wong TL, Buja M, Lefkowitz RJ (1979) Beta adrenergic and muscarinic cholinergic receptors in canine myocardium. J Clin Invest 64: 1423–1428

    PubMed  CAS  Google Scholar 

  92. Devos C, Robberecht P, Nokin P, Waelbroeck M, Clinet M, Camus JC, Beaufort P, Schoenfeld P, Christophe J (1985) Uncoupling between beta-adrenoceptors and adenylate cyclase in dog ischemic myocardium. Naunyn-Schmiedeberg’s Arch Pharmacol 331: 71–75

    CAS  Google Scholar 

  93. Maisel AS, Motulsky HJ, Insel PA (1985) Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science 230: 183–186

    PubMed  CAS  Google Scholar 

  94. Vatner DE, Vatner SF, Fujii AM, Homey C (1985) Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest 76: 2259–2264

    PubMed  CAS  Google Scholar 

  95. Vatner DE, Knight D, Shen YT, Thoma JXJ, Homey CJ, Vatner SF (1988) One hour of myocardial ischemia in conscious dogs increases beta-adrenergic receptors, but decreases adenylate cyclase activity. J Mol Cell Cardiol 20: 75–82

    PubMed  CAS  Google Scholar 

  96. Insel PA, Maisel AS (1989) Alpha1-and beta-adrenergic receptors in myocardial ischemia and injury. In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 81–90

    Google Scholar 

  97. Strasser RH, Dullaeus RB, Marquetant R (1989) Dual sensitization of the adenylate cyclase system in acute myocardial ischemia. Circulation (in press)

    Google Scholar 

  98. Strasser RH, Dullaeus RB, Marquetant R, Kübler W (1988) Dual sensitization of the ß-adrenergic system in early myocardial ischemia: Independent regulation of ß-reeeptors and adenylate cyclase. Circulation 78(Suppl II): 482 1928 (abstract)

    Google Scholar 

  99. Lefkowitz RJ, Caron MG, Stiles GL (1984) Mechanism of membrane-receptor regulation. Biochemical, physiological and clinical insights derived from studies of the adrenergic receptors. N Engl J Med 310: 1570–1579

    PubMed  CAS  Google Scholar 

  100. Strasser RH, Sibley DR, Lefkowitz RJ (1986) A novel catecholamine-activated cAMP-independent pathway for beta-adrenergic receptor phosphorylation in wild type and mutant S49 lymphoma cells: Mechanism of homologous desensitization of adenylate cyclase. Biochemistry 25: 1371–1377

    PubMed  CAS  Google Scholar 

  101. Strasser RH, Benovic JL, Caron MG, Lefkowitz RJ (1986) Beta-agonist and Prostaglandine El-induced translocation of the beta-adrenergic receptor kinase: Evidence that the kinase may act on multiple adenylate cyclase coupled receptors. Proc Natl Acad Sci 83: 6363–6366

    Google Scholar 

  102. Benovic JL, Strasser RH, Caron MG. Lefkowitz RJ (1986) Beta-adrenergic receptor kinase: Identification of a novel protein kinase which phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci 83: 2797–2801

    PubMed  CAS  Google Scholar 

  103. Mukherjee A, McCoy KE, Duke RJ, Hogan M, Hagler H, Buja LM, Willerson JT (1982) Relationship between beta adrenergic receptor numbers and physiological responses during experimental canine myocardial ischemia. Circ Res 50: 735–741

    PubMed  CAS  Google Scholar 

  104. Mukherjee A, Haghani Z, Brady J, Bush L, McBride W, Buja LM, Willerson JT (1983) Differences in myocardial α-and ß-adrenergic receptor numbers in different species. Am J Physiol 245: H957–H962

    PubMed  CAS  Google Scholar 

  105. Mukherjee A, Hogan M, McCoy K, Buja LM, Willerson JT (1980) Influence of experimental myocardial ischemia on alpha1-adrenergic receptors. Circulation 64(Suppl III): 149 (abstract)

    Google Scholar 

  106. Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1982) Increased α-adrenergic receptors in ischemic cat myocardium. J Clin Invest 67: 1232–1236

    Google Scholar 

  107. Corr PB, Witkowski FX, Sobel BE (1978) Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest 61: 109–119

    PubMed  CAS  Google Scholar 

  108. Corr PB, Crafford WA (1981) Enhanced alpha-adrenergic responsiveness in the myocardium: Role of alpha adrenergic blockade. Am Heart J 102: 605–614

    PubMed  CAS  Google Scholar 

  109. Maisel AS, Motulsky HJ, Zieglar MG, Insel PA (1987) Ischemia-and agonist-induced changes in ß-adrenergic receptor traffic in guinea pig hearts. Am J Physiol 253: H1159–H1166

    PubMed  CAS  Google Scholar 

  110. Broadley KJ, Chess-Williams RG, Sheridan DF (1985) 3H-prazosin binding during ischemia and reperfusion in the guinea pig Langendorff heart. Br J Pharmacol 86: 759 (poster)

    Google Scholar 

  111. Dillon JS, Gu XH, Nayler WG (1988) Alpha1-adrenoceptors in the ischemic and reperfused myocardium. J Mol Cell Cardiol 20: 725–735

    PubMed  CAS  Google Scholar 

  112. Hamra M, Rosen MR (1988) Adrenergic receptor stimulation during simulated ischemia and reperfusion in canine cardiac purkinje fibers. Circulation 78: 1495–1502

    PubMed  CAS  Google Scholar 

  113. Thandroyen FT, Worthington MG, Higginson LM, Opie LH (1983) The effect of alpha-and beta-adrenoceptor antagonist agents on reperfusion ventricular fibrillation and metabolic status in the isolated perfused rat heart. J Am Coll Cardiol 1: 1056–1066

    PubMed  CAS  Google Scholar 

  114. Leeb-Lundberg LMF, Cotecchia S, DeBlasi A, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic receptor function by phosphorylation: Agonist-promoted desensitization and phosphorylation of α1-adrenergic receptors coupled to inositol phospholipid metabolism in DDT1 MF2 smooth muscle cells. J Biol Chem 262: 3098–3105

    PubMed  CAS  Google Scholar 

  115. Bouvier M, Leeb-Lundberg LMF, Benovic JL, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic receptor function by phosphorylation. Effects of agonist occupancy on phosphorylation of α1-and ß2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem 262: 3106–3113

    PubMed  CAS  Google Scholar 

  116. Berridge MJ (1987) Inositol triphosphate and diacylglycerol: Two interacting second messengers. Ann Rev Biochem 56: 159–193

    PubMed  CAS  Google Scholar 

  117. Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360

    PubMed  CAS  Google Scholar 

  118. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233: 305–312

    PubMed  CAS  Google Scholar 

  119. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–698

    PubMed  CAS  Google Scholar 

  120. Bell RM (1986) Protein kinase C activation by diacylglycerol second messengers. Cell 45: 631–632

    PubMed  CAS  Google Scholar 

  121. Birnbaumer L, Codina J, Mattera R, Cerione RA, Hildebrandt D, Sunyer T, Rojas FJ, Caron M, Lefkowitz RJ, Iyenger R (1985) Structural basis of adenylate cyclase stimulation and inhibition by distinct guanine nucleotide regulatory proteins. In: Molecular mechanism of transmembranal signalling 4: 131–182

    Google Scholar 

  122. Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231: 234–241

    PubMed  CAS  Google Scholar 

  123. Wilber DJ, Lynch JJ, Montgomery DG, Lucchesi BR (1987) Adrenergic influences in canine ischemic sudden death: Effects of adrenoceptor blockade with prazosin. J Cardiovasc Pharmacol 10: 96–106

    PubMed  CAS  Google Scholar 

  124. Suyatna FD, van Veldhoven PP, Borgers M, Mannaerts GP (1988) Phospholipid composition and amphiphile content of isolated sarcolemma from normal and autolytic rat myocardium. J Mol Cell Cardiol 20: 47–62

    PubMed  CAS  Google Scholar 

  125. Benfey BG, Elfellah MS, Ogilvie RI, Varma DR (1984) Antiarrhythmic effects of prazosin and propranolol during coronary artery occlusion and reperfusion in dogs and pigs. Br J Pharmacol 82: 717–725

    PubMed  CAS  Google Scholar 

  126. Naylor WG, Gordon M, Stephens DJ, Sturrock WJ (1985) A protective effect of prazosin on the ischemic reperfused arrhythmium. J Mol Cell Cardiol 17: 685–699

    Google Scholar 

  127. Matthys E, Patel Y, Kreisberg J, Steward JH, Ventkatachalam M (1984) Lipid alterations induced by renal ischemia: Pathogenetic factor in membrane damage. Kidney 26: 153–161

    CAS  Google Scholar 

  128. Ebeling JG, Vandenbark GR, Kuhn LJ, Ganong BR, Bell RM, Niedel JE (1985) Diacylglycerols mimic phorbolester induction of leukemic cell differentiation. Proc Natl Acad Sci USA 82: 815–819

    PubMed  CAS  Google Scholar 

  129. Kraft AS, Anderson WB (1983) Characterization of cytosolic calcium-activated phospholipid-dependent protein kinase activity in embryonal carcinoma cells. J Biol Chem 258: 9178–9183

    PubMed  CAS  Google Scholar 

  130. Kreutter D, Caldwell AB, Moren MJ (1985) Dissociation of proteinkinase activation from phorbolester-induced maturation of HL-60 leukemia cells. J Biol Chem 260: 5979–5984

    PubMed  CAS  Google Scholar 

  131. Yuan S, Sunahara FA, Sen AK (1987) Tumor-promoting phorbol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res 61: 372–378

    PubMed  CAS  Google Scholar 

  132. Louis JC, Magal E, Yavin E (1988) Protein kinase C alterations in fetal rat brain after global ischemia. J Biol Chem 263: 19282–19285

    PubMed  CAS  Google Scholar 

  133. Dobmeyer DJ, Kekec BK, Sobel BE, Corr PB (1988) Alpha1adrenergic mediated accumulation of lysophosphatidylcholine in isolated adult canine myocityes. Circulation 78(Suppl II): 483 1925 (abstract)

    Google Scholar 

  134. Mori K (1976) Studies on adenyl cyclase system in myocardium (part II): Adenyl cyclase system in myocardial infarction of dogs. Nagoya J Med Sci 39: 9–14

    Google Scholar 

  135. Podzuweit T, Darby AJ, Cherry GW, Opie LH (1978) Cyclic AMP levels in ischemic and non-ischemic myocardium following coronary artery ligation: Relation to ventricular fibrillation. J Mol Cell Cardiol 10: 81–94

    PubMed  CAS  Google Scholar 

  136. Krause EG, Wollenberger A (1980) Cyclic nucleotides in heart in acute myocardial ischemia and hypoxia. Adv Cyc Nucl Res 12: 49–61

    CAS  Google Scholar 

  137. Strasser RH, Dullaeus RB, Marquetant R, Kübler W (1989) ß-Rezeptorunabhängige Sensibilisierung der Adenylatzyklase in der akuten Myokardischämie. Z Kardiol 78(Suppl 1): 88 303 (abstract)

    Google Scholar 

  138. Seamon KB, Daly JE (1981) Forskolin: A unique deterpene activator of cyclic AMP-generating systems. J Cyc Nucl Res 7: 201–224

    CAS  Google Scholar 

  139. Seamon KB, Padgett W, Daly JW (1981) Forskolin: Unique deterpene activator of adenylate cyclase in membranes and intact cells. Proc Natl Acad Sci 78: 3363–3367

    PubMed  CAS  Google Scholar 

  140. Stadel JM, De Lean A, Lefkowitz RJ (1980) A high affinity agonist beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey erythrocyte membranes. J Biol Chem 255: 1436–1441

    PubMed  CAS  Google Scholar 

  141. Gilmann AG (1987) G proteins: Transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649

    Google Scholar 

  142. Mazzei GJ, Katoh N, Kuo JF (1982) Polymyxin B is a more selective inhibitor for phospholipid-sensitive Ca2+-dependent protein kinase than for calmodulin-sensitive Ca2+-dependent protein kinase. Biochem Biophys Res Commun 109: 1129–1133

    PubMed  CAS  Google Scholar 

  143. Bouvier M, Hausdorff WP, DeBlasi A, O’Dowd BF, Kobilka BK, Caron MG, Lefkowitz RJ (1988) Removal of phosphorylation sites from the ß2-adrenergic receptors delays onset of agonist-promoted desensitization. Nature 333: 370–373

    PubMed  CAS  Google Scholar 

  144. Susanni EE, Knight DR, Vatner DE, Vatner SF, Homey CJ (1988) One hour of myocardial ischemia is associated with a decrease in the stimulatory guanyl nucleotide binding protein, Gs. Circulation 78(Suppl II): 83 1926 (abstract)

    Google Scholar 

  145. Kline IK (1961) Myocardial alterations associated with pheochromocytomas. Am J Pathol 38: 539

    PubMed  CAS  Google Scholar 

  146. van Vliet PD, Burchell HB, Titus JF (1966) Focal myocarditis associated with pheochromocytoma. N Engl J Med 274: 1102

    PubMed  Google Scholar 

  147. Raab W, Stark E, Macmillan WH, Gigee WR (1961) Sympathogenic origin and antiad-renergic prevention of stress-induced myocardial lesions. Am J Cardiol 8: 203–211

    PubMed  CAS  Google Scholar 

  148. Leriche R, Fontaine R (1931) Les resultats actuels du traitment chirurgical de l’angine de poitrine. J Chir 38: 785

    Google Scholar 

  149. Cox WV, Robertson HF (1936) The effect of stellate ganglionectomy on the cardiac function of intact dogs and its effect on the extent of myocardial infarction and on cardiac function following coronary artery occlusion. Am Heart J 12: 285–300

    Google Scholar 

  150. Yodice A (1941) Sympathectomy and experimental occlusion of a coronary artery. Am Heart J 22: 545–548

    Google Scholar 

  151. Jones CE, Beck LY, DuPont E, Barnes GE (1978) Effect of coronary ligation on the chronically sympathectomized dog ventricle. Am J Physiol 235: H429–H434

    PubMed  CAS  Google Scholar 

  152. Barber MJ, Thomas JX, Stephen JR, Jones B, Randall WC (1982) Effect of sympathetic nerve stimulation and cardiac denervation on MBF during LAD occlusion. Am J Physiol 12: H556–H574

    Google Scholar 

  153. Sommers HM, Jennings R (1972) Ventricular fibrillation and myocardial necrosis after transient ischemia. Effect of treatment with oxygen, procainamide, reserpine, and propranolol. Arch Intern Med 129: 780–789

    PubMed  CAS  Google Scholar 

  154. Shatney CH, MacCarter DJ, Lillehei RC (1976) Effects of allopurinol, propranolol and methylprednisolone on infarct size in experimental myocardial infarction. Am J Cardiol 37: 572–580

    PubMed  CAS  Google Scholar 

  155. Reimer KA, Rasmussen MM, Jennings RB (1976) On the nature of protection by propranolol against myocardial necrosis after temporary coronary occlusion in dogs. Am J Cardiol 37: 520–527

    PubMed  CAS  Google Scholar 

  156. Abrahamsson T, Almgren O, Svensson L (1981) Local noradrenaline release in acute myocardial ischemia: Influence of catecholamine synthesis inhibition and ß-adrenoceptor blockade on ischemic injury. J Cardiovasc Pharmacol 3: 807–817

    PubMed  CAS  Google Scholar 

  157. Bernauer W (1985) The effect of ß-adrenoceptor blocking agents on evolving myocardial necrosis in coronary ligated rats with and without reperfusion. Naunyn-Schmiedeberg’s Arch Pharmacol 328: 288–294

    CAS  Google Scholar 

  158. Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Betablockade during and after myocardial infarction: An overview of the randomized trials. Prog Card Dis 27: 335–371

    CAS  Google Scholar 

  159. ISIS-I Collaborative Group (First International Study of Infarct Survival) (1986) Randomised trial of intravenous atenolol among 16027 cases of suspected acute myocardial infarction: ISIS-I. Lancet 2: 57–66

    Google Scholar 

  160. Cruickshank JM, Prichard BNC (1987) Beta-blockers in clinical practice. Chapter 5: Myocardial infarction. Churchill Livingstone, Edinburgh, London, Melbourne and New York, pp 435–504

    Google Scholar 

  161. Hill GC, Gettis CS (1980) Effect of acute coronary artery occlusion on local myocardial extracellular potassium concentration in K+ activity in swine. Circulation 61: 768–778

    PubMed  CAS  Google Scholar 

  162. Kleber AG (1983) Extracellular potassium accumulation in acute myocardial ischemia. J Mol Cell Cardiol 16: 389–394

    Google Scholar 

  163. Wilde AAM, Peters RJG, Janse MJ (1988) Catecholamine release and potassium accumulation in the isolated globally ischemic rabbit heart. J Mol Cell Cardiol 20: 887–896

    PubMed  CAS  Google Scholar 

  164. Ellingsen O, Sejersted OM, Leraand S, Ilebekk A (1987) Catecholamine-induced myocardial potassium uptake mediated by ß1-adrenoceptors and adenylate cyclase activation in the pig. Circ Res 60: 540–550

    PubMed  CAS  Google Scholar 

  165. Sharma AD, Saffitz JE, Lee BI, Sobel BE, Corr PB (1983) Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. J Clin Invest 72: 802–818

    PubMed  CAS  Google Scholar 

  166. Blaiklock RG, Hirsh EM, Lehr D (1978) Effect of cardiotoxic doses of adrenergic amines on myocardial cyclic AMP. J Mol Cell Cardiol 10: 499–509

    PubMed  CAS  Google Scholar 

  167. Yates JC, Beamish RE, Dhalla NS (1981) Ventricular dysfunction and necrosis produced by adrenochrome metabolite of epinephrine: Relation to pathogenesis of catecholamine cardiomyopathy. Am Heart J 102: 210–221

    PubMed  CAS  Google Scholar 

  168. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53: 8–15

    PubMed  CAS  Google Scholar 

  169. Mudge GH, Grossman W, Mills RM, Lesch M, Braunwald E (1976) Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 295: 1333–1337

    PubMed  Google Scholar 

  170. Haft JI, Gershengorn K, Kranz P, Albert F, Oestreicher R, Fani K (1972) The role of platelet aggregation in catecholamine-induced cardiac necrosis: Electron microscopic and drug studies. Am J Cardiol 29: 268

    Google Scholar 

  171. Haft JI, Fani K (1973) Intravascular platelet aggregation in the heart induced by stress. Circulation 47: 353–358

    PubMed  CAS  Google Scholar 

  172. O’Brian JR (1983) Some effects of adrenaline and anti-adrenaline compounds on platelets in vitro and in vivo. Nature 200: 763–764

    Google Scholar 

  173. Mehta J, Mehta P, Ostrowski N (1985) Increase in human platelet α-adrenergic receptor affinity for agonist in unstable angina. J Lab Clin Med 106: 661–666

    PubMed  CAS  Google Scholar 

  174. Schaal SF, Wallace AG, Sealy WC (1969) Protective influence of cardiac denervation against arrhythmias of myocardial infarction. Cardiovasc Res 3: 241–244

    PubMed  CAS  Google Scholar 

  175. Ebert PA, Vanderbeek RB, Allgood RJ, Sabiston DC Jr (1970) Effect of chronic cardiac denervation on arrhythmias after coronary artery ligation. Cardiovasc Res 4: 141–147

    PubMed  CAS  Google Scholar 

  176. Sethi V, Haider B, Ahmed SS, Oldewurtel HA, Regan TJ (1973) Influence of beta blockade and chemical sympathectomy on myocardial function and arrhythmias in acute ischaemia. Cardiovasc Res 7: 740–747

    PubMed  CAS  Google Scholar 

  177. Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electro-physiology and arrhythmias during ischaemia and reperfusion. Eur Heart J 5: 960–973

    PubMed  CAS  Google Scholar 

  178. Culling W, Penny WJ, Lewis MJ, Middleton K, Sheridan DJ (1984) Effects of myocardial catecholamine depletion on cellular electrophysiology and arrhythmias during ischaemia and reperfusion. Cardiovasc Res 18: 675–682

    PubMed  CAS  Google Scholar 

  179. Daugherty A, Frayn KN, Redfern WS, Woodward B (1986) The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivo and in vitro. Br J Pharmacol 87: 265–277

    PubMed  CAS  Google Scholar 

  180. Dietz R, Offner B, Dart AM, Schömig A (1989) Ischaemia-induced noradrenaline release mediates ventricular arrhythmias. In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, Berlin-Heidelberg-New York pp 313–321

    Google Scholar 

  181. Wilkerson RD, Sanders PW (1978) The antiarrhythmic action of amitriptyline on arrhythmias associated with myocardial infarction in dogs. Eur J Pharmacol 51: 193–198

    PubMed  CAS  Google Scholar 

  182. Schwartz PJ, Snebold NG, Brown AM (1976) Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol 37: 1034–1040

    PubMed  CAS  Google Scholar 

  183. Schwartz PJ, Verrier RL, Lown B (1977) Effect of stellectomy and vagotomy on ventricular refractoriness in dogs. Circ Res 40(Suppl 6): 536–540

    PubMed  CAS  Google Scholar 

  184. Lubbe WF, Podzuweit Th, Daries PS, Opie LH (1978) The role of cyclic adenosine monophosphate in adrenergic effects on ventricular vulnerability to fibrillation in the isolated perfused rat heart. J Clin Invest 63: 1260–1269

    Google Scholar 

  185. Pentecost BL, Austein WG (1966) Beta-adrenergic blockade in experimental myocardial infarction. Am Heart J 72(6): 790–796

    PubMed  CAS  Google Scholar 

  186. Menken U, Wiegand V, Bucher P, Meesmann W (1979) Prophylaxis of ventricular fibrillation after acute experimental coronary occlusion by chronic beta-adrenoceptor blockade with atenolol. Cardiovasc Res 13: 588–594

    PubMed  CAS  Google Scholar 

  187. Fearon RE (1967) Propranolol in the prevention of ventricular fibrillation due to experimental coronary artery occlusion. Am J Cardiol 20: 222–228

    PubMed  CAS  Google Scholar 

  188. Kupersmith J, Shiang H, Litwak RS, Herman MV (1976) Electrophysiological and antiarrhythmic effects of propranolol in canine acute myocardial ischemia. Circ Res 38: 302–307

    PubMed  CAS  Google Scholar 

  189. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65: 161–171

    PubMed  CAS  Google Scholar 

  190. Stewart JR, Burmeister WE, Burmeister J, Lucchesi BR (1980) Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol 2: 77–91

    PubMed  CAS  Google Scholar 

  191. Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1981) Increased α-adrenergic receptors in ischemic cat myocardium. A potential mediator of electrophysiological derangements. J Clin Invest 67: 1232–1236

    PubMed  CAS  Google Scholar 

  192. Williams LT, Guerrero JL, Leinbach RC, Gold HK (1982) Prevention of reperfusion dysrhythmias by selective coronary alpha adrenergic blockade. Am J Cardiol 49: 1046

    Google Scholar 

  193. Levy MN (1983) Neural control of cardiac rhythm and contraction. Chapter 4. In: Rosen MR, Hoffman BF (eds) Cardiac Therapy. Martinus Nijhoff Publishers, Boston, The Hague, Dodrecht, Lancaster pp 73–94

    Google Scholar 

  194. Lazzara R, Marchi S (1989) Electrophysiological mechanisms for the generation of arrhythmias with adrenergic stimulation. In: Brachmann J, Schömig A (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer Verlag, New York-Berlin-Heidelberg pp 231–238

    Google Scholar 

  195. Coronel R, Fiolet JWT, Wilms-Schopman FJG, Schaapherder AFM, Johnson TA, Gettes IS, Janse MJ (1988) Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in isolated perfused porcine heart. Circulation 77: 1125–1138

    PubMed  CAS  Google Scholar 

  196. Janse MJ, Cinca J, Morena H, Fiolet JWT, Kleber AG, de Vries GP, Beckert AE, Durrer D (1979) The border zone in myocardial ischemia. An electrophysiological, metabolic and histological correlation in the pig heart. Circ Res 44: 576–588

    CAS  Google Scholar 

  197. Scherlag BJ, El-Sherif N, Hope RR, Lazzara R (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 35: 372–383

    PubMed  CAS  Google Scholar 

  198. Verrier RL, Thompson PL, Lown B (1974) Ventricular vulnerability during sympathetic stimulation: Role of heart rate and blood pressure. Cardiovasc Res 8: 602–610

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

SchÖmig, A., Strasser, R., Richardt, G. (1990). Release and effects of catecholamines in myocardial ischemia. In: Piper, H.M. (eds) Pathophysiology of Severe Ischemic Myocardial Injury. Developments in Cardiovascular Medicine, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0475-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0475-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0459-3

  • Online ISBN: 978-94-009-0475-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics