Skip to main content

Irreversible ischemic injury — definition of the problem

  • Chapter
Pathophysiology of Severe Ischemic Myocardial Injury

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 104))

Abstract

In spite of tremendous strides forward in cardiac pathophysiology over the past 30 years, knowledge of the genesis of irreversible ischemic myocardial injury is still limited. Ischemic myocardial heart disease is predominantly caused by the thrombotic occlusion of coronary arteries. After an initial period of ischemia during which restoration of supply conditions still allows structural and functional recovery of the myocardial cell, ischemic injury becomes irreversible or, in other words, reversible ischemia turns into infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hearse DJ, Humphrey SM, Chain EB (1973) Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release. J Mol Cell Cardiol 5: 395–407

    Article  PubMed  CAS  Google Scholar 

  2. Ganote CE (1983) Contraction band necrosis and irreversible myocardial injury. J Mol Cell Cardiol 15: 67–73

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed SA, Williamson JR, Roberts E, Clark RE, Sobel BE (1976) The association of increased plasma MB CPK activity and irreversible ischemic myocardial injury in the dog. Circulation 54: 187–193

    PubMed  CAS  Google Scholar 

  4. Spieckermann PG, Nordbeck H, Preusse CJ (1979) From heart to plasma. In: Hearse DJ, De Leiris J (eds) Enzymes in Cardiology: Diagnosis and Research. New York, John Wiley, pp 59–79

    Google Scholar 

  5. Piper HM, Schwartz P, Hütter JF, Spieckermann PG (1984) Energy metabolism and enzyme release of cultured adult rat heart muscle cells during anoxia. J Mol Cell Cardiol 16: 995–1007

    Article  PubMed  CAS  Google Scholar 

  6. Wienen W, Kammermeier H (1988) Intra-and extracellular markers in interstitial transsudate of perfused rat hearts. Am J Physiol 254: H785–H794

    PubMed  CAS  Google Scholar 

  7. Barnard RJ, Okamoto F, Buckberg GD, Sjostrand F, Rosenkranz ER, Vinten-Johansen J, Allen BS, Leaf J (1986) Studies of controlled reperfusion after ischemia. III. Histochemical studies: Inability of triphenyltetrazolium chloride nonstaining to define tissue necrosis. J Thorac Cardiovasc Surg 92: 5002–5012

    Google Scholar 

  8. Piper HM (1988) Evaluation of anoxic injury in isolated adult cardiomycytes. In: Clark WA, Decker RS, Borg TK (eds) Biology of Isolated Adult Cardiac Myocytes. New York, Elsevier, pp 68–81

    Google Scholar 

  9. Kubler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1: 351–377

    Article  PubMed  CAS  Google Scholar 

  10. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1978) Relation between high energy phosphate and lethal injury in myocardial injury in the dog. Am J Pathol 92: 187–241

    PubMed  CAS  Google Scholar 

  11. Taegtmeyer H, Roberts AFC, Raine AEG (1985) Energy metabolism in reperfused heart muscle: metabolic correlates to return of function. J Am Coll Cardiol 6: 864–870

    Article  PubMed  CAS  Google Scholar 

  12. Schwartz P, Piper HM, Spahr R, Spieckermann PG (1984) Ultrastructure of adult myocardial cells during anoxia and reoxygenation. Am J Pathol 115: 349–361

    PubMed  CAS  Google Scholar 

  13. Chien KR, Han A, Sen A, Buja LM, Willerson JT (1984) Accumulation of unesterified arachidonic acid in ischemic canine myocardium: Relation to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane lipids. Circ Res 54: 313–322

    PubMed  CAS  Google Scholar 

  14. Idell-Wenger JA, Grotyohann LW, Neely JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253: 4310–4318

    PubMed  CAS  Google Scholar 

  15. Van der Vusse GJ, Stam H (1987) Accumulation of lipids and lipid-intermediates in the heart during ischaemia. Basic Res Cardiol 82, suppl 1: 157–167

    PubMed  Google Scholar 

  16. Piper HM, Das A (1987) Detrimental actions of endogenous fatty acids and their derivatives. A study of ischaemic mitochondrial injury. Basic Res Cardiol 82, suppl 1: 187–196

    PubMed  CAS  Google Scholar 

  17. Piper HM, Das A (1986) The role of fatty acids in ischemic tissue injury: difference between oleic and palmitic acid. Basic Res Cardiol 81: 373–383

    Article  PubMed  CAS  Google Scholar 

  18. Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48: 1–16

    PubMed  CAS  Google Scholar 

  19. Slater TF (1984) Free radical mechanisms in tissue injury. Biochem J 222: 1–15

    PubMed  CAS  Google Scholar 

  20. Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Phil Trans R Soc Lond B 311: 617–631

    Article  CAS  Google Scholar 

  21. McCord JM (1988) Free radicals and myocardial ischemia: Overview and outlook. Free Rad Biol Med 4: 9–14

    Article  PubMed  CAS  Google Scholar 

  22. Arroyo CM, Kramer JH, Dickens BF, Weglicki WB (1987) Identification of free radicals in myocardial ischemia reperfusion by spin trapping with nitrone DMPO. FEBS Lett 211: 101–104

    Article  Google Scholar 

  23. Garlick PB, Davies MJ, Slater TS, Hearse DJ (1987) Detection of free radical production in the isolated rat heart using a spin trap agent and electron spin resonance. Circ Res 61: 757–760

    PubMed  CAS  Google Scholar 

  24. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84: 1404–1407

    Article  PubMed  CAS  Google Scholar 

  25. Baker JE, Felix CC, Olinger GN, Kalyanaraman B (1988) Myocardial ischemia and reperfusion: Direct evidence for free radical generation by electron spin resonance spectroscopy. Proc Natl Acad Sci USA 85: 2786–2789

    Article  PubMed  CAS  Google Scholar 

  26. Mullane KM, Salmon JA, Kraemer R (1987) Leukocyte-derived metabolites of arachidonic acid in ischemia-induced myocardial injury. Fed Proc 46: 2422–2433

    PubMed  CAS  Google Scholar 

  27. Werns SW, Lucchesi BR (1988) Leukocytes, oxygen radicals, and myocardial injury due to ischemia and reperfusion. Free Rad Biol Med 4: 31–37

    Article  PubMed  CAS  Google Scholar 

  28. Piper HM (1989) Energy deficiency, calcium overload or oxidative stress: possible causes of irreversible ischemic myocardial injury. Klin Wschr 67: 465–476

    Article  PubMed  CAS  Google Scholar 

  29. Carafoli E (1985) The homeostasis of calcium in heart cells. J Mol Cell Cardiol 17: 203–212

    Article  PubMed  CAS  Google Scholar 

  30. Nicholls DG, Crompton M (1980) Mitochondrial calcium transport. FEBS Lett 111: 261–268

    Article  PubMed  CAS  Google Scholar 

  31. Piper HM, Jacobson SL, Schwartz JL, Mealing GAR, Whitfield JF (1988) Disturbance of Ca2+ homeostasis in restrained cardiomyocytes under anoxia and reoxygenation. J Mol Cell Cardiol 20, suppl V: 35

    Article  Google Scholar 

  32. Weglicki WB, Low MG (1987) Phospholipases of the myocardium. Basic Res Cardiol 82, suppl 1: 107–119

    PubMed  CAS  Google Scholar 

  33. Siegmund B, Koop A, Klietz T, Schwartz P, Piper HM (1989) Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol: in press

    Google Scholar 

  34. Ganote CE, Vander Heide RS (1988) Irreversible injury of isolated adult rat myocytes. Osmotic fragility during metabolic inhibition. Am J Pathol 132: 212–222

    CAS  Google Scholar 

  35. Kloner RA, Ganote CE, Jennings RB (1974) The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54: 1496–1508

    Article  PubMed  CAS  Google Scholar 

  36. Sunnergren KP, Rovetto MJ (1987) Myocyte and endothelial injury with ischemia reperfusion in isolated rat hearts. Am J Physiol 252: H1211–H1217

    PubMed  CAS  Google Scholar 

  37. Buderus S, Siegmund B, Spahr R, Krützfeldt A, Piper HM (1989) Resistance of endothelial cells to anoxia-reoxygenation in isolated guinea pig hearts. Am J Physiol 257: 488–493

    Google Scholar 

  38. Jarasch ED, Grund C, Bruder G, Heid HW, Keenan TW, Franke WW (1981) Localization of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 25: 67–82

    Article  PubMed  CAS  Google Scholar 

  39. Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Eur Heart J 5: 960–973

    PubMed  CAS  Google Scholar 

  40. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53: 8–15

    PubMed  CAS  Google Scholar 

  41. Kröger K, Schipke J, Heusch G, Thämer V (1989) Myocardial dysfunction induced by peripheral nociceptive stimulation. Europ Heart J: in press

    Google Scholar 

  42. Gu J, Polak JM, Allen JM, Huang WM, Sheppard MN, Tatemoto K, Bloom SR (1984) High concentrations of a novel peptide, neuropeptide Y, in the innervation of mouse and rat heart. J Histochem Cytochem 32: 467–472

    Article  PubMed  CAS  Google Scholar 

  43. Hassall CJS, Burnstock G (1984) Neuropeptide Y-like immunoreactivity in cultured intrinsic neurones of the heart. Neuroscience Lett 52: 111–115

    Article  CAS  Google Scholar 

  44. Edvinsson L, Hakanson R, Wahlestedt C, Uddman R (1987) Effects of neuropeptide Y on the cardiovascular system. Trends Pharmacol Sci 8: 231–235

    Article  CAS  Google Scholar 

  45. Millar BC, Piper HM, McDermott BJ (1988) The antiadrenergic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn Schmiedeberg’s Arch Pharmacol 338: 426–429

    Article  CAS  Google Scholar 

  46. Piper HM, Millar BC, McDermott BJ (1989) The negative inotropic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn Schmiedeberg’s Arch Pharmacol 340: 333–337

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Piper, H.M. (1990). Irreversible ischemic injury — definition of the problem. In: Piper, H.M. (eds) Pathophysiology of Severe Ischemic Myocardial Injury. Developments in Cardiovascular Medicine, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0475-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0475-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0459-3

  • Online ISBN: 978-94-009-0475-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics