Skip to main content

Piasmodesmal cell-to-cell transport of proteins and nucleic acids

  • Chapter
Post-Transcriptional Control of Gene Expression in Plants

Abstract

The complexity associated with post-translational processing, in terms of protein sorting and delivery is now well understood. Although such studies have been focused almost exclusively on the fate of proteins within the cell in which they are synthesized, recent studies indicate that it is time to broaden this focus to incorporate the concept of intercellular targeting of proteins. Direct evidence is now available that viral and endogenous proteins can be synthesized in a particular cell and subsequently transported into neighboring (or more distant) cells. Plasmodesmata, plasma membrane-lined cytoplasmic pores, are thought to establish the intercellular pathway responsible for this cell-to-cell trafficking of macromolecules (proteins and nucleic acids). These recent findings establish a new paradigm for understanding the manner in which higher plants exert control over developmental processes. We discuss the concept that programming of plant development involves supracellular control achieved by plasmodesmal trafficking of informational molecules, herein defined as supracellular control proteins (SCPs). This novel concept may explain why, in plants, cell fate is determined by position rather than cell lineage. Finally, the circulation of long-distance SCPs, within the phloem, may provide the mechanism by which the plant signals to the shoot apical meristem that it is time to switch to the reproductive phase of its development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernier G: The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 39: 175–219 (1988).

    Google Scholar 

  2. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P: Physiological signals that induce flowering. Plant Cell 5: 1147–1155(1993).

    PubMed  CAS  Google Scholar 

  3. Botha CEJ, Hartley BJ, Cross RHM: The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally-fixed leaf blades. Ann Bot 72: 255–261 (1993).

    Google Scholar 

  4. Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR: Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721–743(1993).

    CAS  Google Scholar 

  5. Bowman JL, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz EM: SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114: 599–615 (1992).

    PubMed  CAS  Google Scholar 

  6. Bowman JL, Smyth DR, Meyerowitz EM: Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52 (1989).

    PubMed  CAS  Google Scholar 

  7. Bradley D, Carpenter R, Sommer H, Hartley N, Coen E: Complementary floral homeotic phenotypes result from opposite orientations of atransposon at the plena locus of Antirrhinum. Cell 72: 85–95 (1993).

    PubMed  CAS  Google Scholar 

  8. Carpenter R, Coen ES: Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development 121: 19–26 (1995).

    PubMed  CAS  Google Scholar 

  9. Coen ES, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R: floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322 (1990).

    PubMed  CAS  Google Scholar 

  10. Citovsky V, Knorr D, Schuster G, Zambryski P: The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60: 637–647 (1990).

    PubMed  CAS  Google Scholar 

  11. Citovsky V, Zambryski P: How do plant virus nucleic acids move through intercellular connections? BioEssays 13: 373–379 (1991).

    PubMed  CAS  Google Scholar 

  12. Citovsky V, Wong ML, Shaw AL, Venkataram Prasad BV, Zambryski P: Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4: 397–411 (1992).

    PubMed  CAS  Google Scholar 

  13. Citovsky V: Probing plasmodesmal transport with plant viruses. Plant Physiol 102: 1071–1076 (1993).

    PubMed  CAS  Google Scholar 

  14. Cleland RE, Fujiwara T, Lucas WJ: Plasmodesmal-mediated cell-to- cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178: 81–85 (1994).

    PubMed  CAS  Google Scholar 

  15. Dawson WO, Bubrick P, Grantham GL: Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78: 783–789(1988).

    CAS  Google Scholar 

  16. Deom CM, Oliver MJ, Beachy RN: The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237: 389–394 (1987).

    PubMed  CAS  Google Scholar 

  17. Deom CM, Lapidot M, Beachy RN: Plant virus movement proteins. Cell 69: 221–224 (1992).

    PubMed  CAS  Google Scholar 

  18. Derrick PM, Barker H, Oparka KJ: Increase in plasmod-esmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4: 1405–1412(1992).

    PubMed  Google Scholar 

  19. Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ: Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4: 915–928 (1992).

    PubMed  CAS  Google Scholar 

  20. Ding B, Turgeon R, Parthasarathy MV: Substructure of freeze substituted plasmodesmata. Protoplasma 169: 28–41 (1992).

    Google Scholar 

  21. Ding B, Li Q, Nguyen L, Palukaitis P, Lucas WJ: Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology 207: 345–353 (1995).

    PubMed  CAS  Google Scholar 

  22. Ding B, Lucas WJ: Secondary Plasmodesmata: Biogenesis, Special Functions and Evolution. In: Smallwood M, Knox P, Bowles D (eds) Membranes: Specialized Functions in Plant Cells. Bios Scientific Publishers, Oxford (in press).

    Google Scholar 

  23. Ding XS, Shintaku MH, Arnold SA, Nelson RS: Accumulation of mild and severe strains of tobacco mosaic virus in minor veins of tobacco. Mol Plant-Microbe Interact 8: 32–40 (1995).

    CAS  Google Scholar 

  24. Dolja VV, McBride HJ, Carrington JC: Tagging of plant potyvirus replication and movement by insertion of Beta-glucuronidase into the viral polyprotein. Proc Natl Acad Sci USA 89: 10208–10212 (1992).

    PubMed  CAS  Google Scholar 

  25. Dorokhov YL, Alexandrova NM, Miroschnichenko NA, Atabekov JG: Isolation and analysis of virus-specific ribo-nucleoprotein of tobacco mosaic virus-infected tobacco. Virology 127:237–252 (1983).

    PubMed  CAS  Google Scholar 

  26. Dorokhov YL, Alexandrova NM, Miroschnichenko NA, Atabekov JG: The informosome-like virus-specific ribonuc-leoprotein (vRNP) may be involved in the transport of tobacco mosaic virus infection. Virology 137: 127–134 (1994).

    Google Scholar 

  27. Drews GN, Bowman JL, Meyerowitz EM: Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65: 991–1002 (1991).

    PubMed  CAS  Google Scholar 

  28. Feng XH, Kung SD: Identification of differentially expressed members of tobacco homeobox families by differential PCR. Biochem Biophys Res Comm 198: 1012–1019 (1994).

    PubMed  CAS  Google Scholar 

  29. Fisher DB, Wu Y, Ku MSB: Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100: 1433–1441 (1992).

    PubMed  CAS  Google Scholar 

  30. Flanagan CA, Ma H: Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26: 581–595 (1994).

    PubMed  CAS  Google Scholar 

  31. Fujiwara T, Giesman-Cookmeyer D, Ding B, Lommel SA, Lucas WJ: Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5: 1783–1794 (1993).

    PubMed  CAS  Google Scholar 

  32. Gamalei YV: Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3: 96–110 (1989).

    Google Scholar 

  33. Glazer AN, Rye HS: Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 359: 859–861 (1992).

    PubMed  CAS  Google Scholar 

  34. Goto K, Meyerowitz EM: Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Devel 8: 1548–1560 (1994).

    PubMed  CAS  Google Scholar 

  35. Gustafson-Brown C, Savidge B, Yanofsky MF: Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131–143 (1994).

    PubMed  CAS  Google Scholar 

  36. Hantke SS, Carpenter R, Coen ES: Expression of floricaula in single cell layers of periclinal chimeras activates downstream homeotic genes in all layers of floral meristems. Development 121:27–35 (1995).

    PubMed  CAS  Google Scholar 

  37. Huala E, Sussex IM: Determination and cell interactions in reproductive meristems. Plant Cell 5: 1157–1165 (1993).

    PubMed  Google Scholar 

  38. Huijser P, Klein J, Lonnig WE, Meijer H, Saedler H, Sommer H: Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11: 1239–1249 (1992).

    PubMed  CAS  Google Scholar 

  39. Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES: Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7: 1501–1510 (1995).

    PubMed  CAS  Google Scholar 

  40. Irish VF, Sussex IM: Function of the apetala-I gene during Arabidopsis floral development. Plant Cell 2: 741–753 (1990).

    PubMed  CAS  Google Scholar 

  41. Ishiwatari Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M: Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195: 456–463 (1995).

    PubMed  CAS  Google Scholar 

  42. Jack T, Brockman LL, Meyerowitz EM: The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697 (1992).

    PubMed  CAS  Google Scholar 

  43. Jack T, Fox GL, Meyerowitz EM: Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttran-scriptional regulation determine floral organ identity. Cell 76: 703–716 (1994).

    PubMed  CAS  Google Scholar 

  44. Jackson D, Veit B, Hake S: Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405–413 (1994).

    CAS  Google Scholar 

  45. Jofuku KD, den Boer BGW, Montague MV, Okamuro JK: Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211–1225 (1994).

    PubMed  CAS  Google Scholar 

  46. Kano-Murakami Y, Yanai T, Tagiri A, Matsuoka M: A rice homeotic gene, OSH1, causes unusual phenotypes in transgenic tobacco. FEBS Let 334: 365–368 (1993).

    CAS  Google Scholar 

  47. Kempin SA, Savidge B, Yanofsky MF: Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522–525 (1995).

    PubMed  CAS  Google Scholar 

  48. Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S: Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6: 1877–1887 (1994).

    PubMed  CAS  Google Scholar 

  49. Koonin EV, Mushegian AR, Ryabov EV, Dolja VV: Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72: 2895–2903 (1991).

    PubMed  Google Scholar 

  50. Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW: AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1:1195–1208 (1989).

    PubMed  Google Scholar 

  51. Levin JZ, Meyerowitz EM: UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7: 529–548 (1995).

    PubMed  CAS  Google Scholar 

  52. Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S: A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876 (1994).

    PubMed  CAS  Google Scholar 

  53. Lucas WJ, Ding B, van der Schoot C: Plasmodesmata and the supracellular nature of plants. New Phytol 125: 435–476 (1993).

    Google Scholar 

  54. Lucas WJ, Wolf S: Plasmodesmata: the intercellular organelles of green plants. Trends Cell Biol 3: 308-315 (1993).

    PubMed  CAS  Google Scholar 

  55. Lucas WJ, Gilbertson RL: Plasmodesmata in relation to viral movement within leaf tissues. Annu Rev Phytopath 32: 387–411 (1994).

    CAS  Google Scholar 

  56. Lucas WJ: Plasmodesmata: intercellular channels for macro-molecular transport in plants. Curr Opin Cell Biol 7: 673–680 (1995).

    PubMed  CAS  Google Scholar 

  57. Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S: Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270: 1980–1983 (1995).

    PubMed  CAS  Google Scholar 

  58. Ma H: The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev 8: 745–756 (1994).

    PubMed  CAS  Google Scholar 

  59. Ma H, McMullen MD, Finer JJ: Identification of a homeobox-containing gene with enhanced expression during soybean (Glycine max L.) somatic embryo development. Plant Mol Biol 24: 465–473 (1994).

    PubMed  CAS  Google Scholar 

  60. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF: Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273–277 (1992).

    PubMed  CAS  Google Scholar 

  61. Mandel MA, Yanofsky MF: A gene triggering flower formation in Arabidopsis. Nature 377: 522–524 (1995).

    PubMed  CAS  Google Scholar 

  62. Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T, Kano-Murakami Y: Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell 5: 1039–1048 (1993).

    PubMed  CAS  Google Scholar 

  63. Maule AJ: Virus movement in infected plants. Crit Rev Plant Sci 9: 457–473 (1991).

    CAS  Google Scholar 

  64. Melcher U: Similarities between putative transport proteins of plant viruses. J Gen Virol 71:1009–1018 (1990).

    PubMed  CAS  Google Scholar 

  65. Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y: Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6: 2557–2563 (1987).

    PubMed  CAS  Google Scholar 

  66. Nakamura S, Hayashi H, Mori S, Chino M: Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol 34:927–933 (1993).

    CAS  Google Scholar 

  67. Nelson RS, Li G, Hodgson RAJ, Beachy RN, Shintaku MH: Impeded phloem-dependent accumulation of the masked strain of tobacco mosaic virus. Mol Plant-Microbe Interact 6: 45–54 (1993).

    Google Scholar 

  68. Noueiry AO, Lucas WJ, Gilbertson RL: Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76: 925–932 (1994).

    PubMed  CAS  Google Scholar 

  69. Okamuro JK, den Boer BGW, Jofuku KD: Regulation of Arabidopsis flower development. Plant Cell 5: 1183–1193 (1993).

    PubMed  CAS  Google Scholar 

  70. Oparka KJ, Prior DAM: Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2: 741–750 (1992).

    Google Scholar 

  71. Oparka KJ, Duckett CM, Prior DAM, Fisher DB: Real-time imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6: 759–766 (1994).

    Google Scholar 

  72. Osman TAM, Hayes RJ, Buck KW: Cooperative binding of the red clover necrotic mosaic virus movement protein to single-stranded nucleic acids. J Gen Virol 73: 223–227 (1992).

    PubMed  CAS  Google Scholar 

  73. Parthasarathy MV: Sieve-element structure. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of Plant Physiology, New Series: Transport in Plants I. Phloem Transport, vol 1, pp. 3-38. Springer-Verlag, Berlin, pp. 3–38 (1975).

    Google Scholar 

  74. Robards AW, Lucas WJ: Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41: 369–419 (1990).

    Google Scholar 

  75. Rounsley SD, Ditta GS, Yanofsky MF: Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259–1269 (1995).

    PubMed  CAS  Google Scholar 

  76. Sakai H, Medrano LJ, Meyerowitz EM: Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378: 199–203 (1955).

    Google Scholar 

  77. Sakuth T, Schobert C, Pecsvaradi A, Eichholz A, Komor E, Orlich G: Specific proteins in the sieve tube exudate of Ricinus communis L. seedlings: separation, characterization and in vivo labelling. Planta 191: 207–213 (1993).

    CAS  Google Scholar 

  78. Sanger M, Passmore B, Falk BW, Bruening G, Ding B, Lucas WJ: Symptom severity of beet western yellows virus strain ST9 is conferred by the ST9-associated RNA and is not associated with virus release from the phloem. Virology 200: 48–55 (1994).

    PubMed  CAS  Google Scholar 

  79. Savidge B, Rounsley SD, Yanofsky MF: Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721–733 (1995).

    PubMed  CAS  Google Scholar 

  80. Schobert C, Grossmann P, Gottachalk M, Komor E, Pecsvaradi A, zur Nieden U: Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta 196:205–210 (1995).

    CAS  Google Scholar 

  81. Schultz EA, Haughn GW: LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781 (1991).

    PubMed  Google Scholar 

  82. Schultz EA, Pickett FB, Haughn GW: The FLO10 gene product regulates the expression domain of homeotic genes AP3 and PI in Arabidopsis flowers. Plant Cell 3: 1221–1237 (1991).

    PubMed  CAS  Google Scholar 

  83. Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lonnig WE, Saedler H, Sommer H: Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11: 251–263 (1992).

    PubMed  CAS  Google Scholar 

  84. Simon R, Carpenter R, Doyle S, Coen E: Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell 78: 99–107 (1994).

    PubMed  CAS  Google Scholar 

  85. Sinha N, Hake S: Mutant characters of Knotted maize leaves are determined in the innermost tissue layers. Dev Biol 141: 203–210 (1990).

    PubMed  CAS  Google Scholar 

  86. Sinha NR, Williams RE, Hake S: Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Devel 7: 787–795 (1993).

    PubMed  CAS  Google Scholar 

  87. Smith LG, Green B, Veit B, Hake S: A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21–30 (1992).

    PubMed  CAS  Google Scholar 

  88. Sommer H, Beltran JP, Huijser P, Pape H, Lonnig WE, Saedler H, Schwarz-Sommer Z: Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605–613 (1990).

    PubMed  CAS  Google Scholar 

  89. St Johnston D, Nusslein-Volhard C: The origin of pattern and polarity in the Drosophila embryo. Cell 68: 201–219 (1992).

    PubMed  CAS  Google Scholar 

  90. Stewart RN, Meyer FG, Dermen H: Camellia +’Daisy Eagleson’, a graft chimera of Camellia sasanqua and C. japonica. Am J Bot 59: 515–524 (1972).

    Google Scholar 

  91. Szymkowiak EJ, Sussex IM: Effect of lateral suppressor on petal initiation in tomato. Plant J 4: 1–7 (1993).

    PubMed  CAS  Google Scholar 

  92. Szymkowiak EJ, Sussex IM: The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell 4: 1089–1100 (1992).

    PubMed  CAS  Google Scholar 

  93. Takamatsu N, Ishiakwa M, Meshi T, Okada Y: Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6: 307–311 (1987).

    PubMed  CAS  Google Scholar 

  94. Terry BR, Robards AW: Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171: 145–157 (1987).

    CAS  Google Scholar 

  95. Tilney LG, Cooke TJ, Connelly PS, Tilney MS: The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112: 739–747 (1991).

    PubMed  CAS  Google Scholar 

  96. Tomenius K, Clapham D, Meshi T: Localization by immun-ogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160: 363–371 (1987).

    PubMed  CAS  Google Scholar 

  97. Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig WE, Saedler H, Sommer H, Schwarz-Sommer Z: GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11: 4693–4704 (1992).

    PubMed  CAS  Google Scholar 

  98. van Bel AJE: Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44: 253–281 (1993).

    Google Scholar 

  99. van Bel AJE, van Rijen HVM: Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192: 165–175 (1994).

    Google Scholar 

  100. Vollbrecht E, Veit B, Sinha N, Hake S: The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350: 241–243 (1991).

    PubMed  CAS  Google Scholar 

  101. von Arnim AG, Deng XW: Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79: 1035–1045 (1994).

    Google Scholar 

  102. Waigmann E, Lucas WJ, Citovsky V, Zambryski P: Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91: 1433–1437 (1994).

    PubMed  CAS  Google Scholar 

  103. Wang D, Maule AJ: Inhibition of host gene expression associated with plant virus infection. Science 267: 229–231 (1995).

    PubMed  CAS  Google Scholar 

  104. Weigel D: The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7: 388–389 (1995).

    PubMed  CAS  Google Scholar 

  105. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859 (1992).

    PubMed  CAS  Google Scholar 

  106. Weigel D, Meyerowitz EM: Activation of floral homeotic genes in Arabidopsis. Science 261: 1723–1726 (1993).

    PubMed  CAS  Google Scholar 

  107. Weigel D, Nilsson O: A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495-500 (1995).

    PubMed  CAS  Google Scholar 

  108. Wilkinson MD, Haughn GW: UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Plant Cell 7: 1485–1499 (1995).

    PubMed  CAS  Google Scholar 

  109. Wolf S, Deom CM, Beachy RN, Lucas WJ: Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246: 377–379 (1989).

    PubMed  CAS  Google Scholar 

  110. Yanofsky MF: Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annu Rev Plant Physiol Plant Mol Biol 46: 167–188 (1995).

    CAS  Google Scholar 

  111. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM: The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39 (1990).

    PubMed  CAS  Google Scholar 

  112. Zachgo S, Silva EA, Motte P, Trobner W, Saedler H, Schwarz-Sommer Z: Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121: 2861–2875 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mezitt, L.A., Lucas, W.J. (1996). Piasmodesmal cell-to-cell transport of proteins and nucleic acids. In: Filipowicz, W., Hohn, T. (eds) Post-Transcriptional Control of Gene Expression in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0353-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0353-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6644-0

  • Online ISBN: 978-94-009-0353-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics