Skip to main content

Introduction to Circulating Fluidized Beds

  • Chapter
Circulating Fluidized Beds

Abstract

Solid particles are often of great interest in the chemical process industry, mineral processing, pharmaceutical production, energy-related processes, etc. In some cases the particles serve as catalysts for reacting gases and/or liquids. In other cases, as in ore processing, the particles must be chemically converted. In still other processes the particles must undergo physical transformation, as in drying of particulate solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen, A.R. and Geldart, D. (1980) Behaviour of gas-fluidized beds of fine powders, Part I. Homogeneous expansion. Powder Technol., 26, 35–46

    Article  CAS  Google Scholar 

  • Avidan, A.A. and Yerushalmi, J. (1980) Bed expansion in high velocity fluidization Powder Technol., 32, 223–232

    Article  Google Scholar 

  • Avidan, A.A., Edwards, E. and Owen, H. (1990) Innovative improvements highlight FCC’s past and future. Oil and Gas J., Jan. 33–58

    Google Scholar 

  • Baerns, M., Mleczko, L., Tjiatjopoulos, G.J. and Vadalos, I.A. (1994) Comparative simulation studies on the performance of bubbling and turbulent bed reactors for the oxidative coupling of methane in circulating fluidized bed, in Circulating Fluidized Bed Technology IV (ed. A.A. Avidan), AIChE, New York, pp. 414–421

    Google Scholar 

  • Bi, H.T. (1994) Flow regime transitions in gas—solid fluidization and vertical transport. Ph.D. thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Bi, H.T. and Fan, L.-S. (1991) Regime transitions in gas—solid circulating fluidized beds. AIChE Annual Meeting, Los Angeles, Nov. 17–22

    Google Scholar 

  • Bi, H.T. and Grace, J.R. (1994) Transition from bubbling to turbulent fluidization. AIChE Annual Meeting, San Francisco, Nov. 13–18

    Google Scholar 

  • Bi, H.T. and Grace, J.R. (1995a) Effects of measurement methods on velocities used to demarcate the transition to turbulent fluidization. Chem. Eng. J., 57, 261–271

    CAS  Google Scholar 

  • Bi, H.T. and Grace, J.R. (1995b) Flow regime diagrams for gas—solids fluidization and upward transport. Int. J. Multiphase Flow, 21, 1229–1236

    Article  CAS  Google Scholar 

  • Bi, H.T., Grace, J.R. and Zhu, J.X. (1993) On types of choking in pneumatic systems. Int. J. Multiphase Flow, 19, 1077–1092

    Article  CAS  Google Scholar 

  • Bi, H.T., Grace, J.R. and Zhu, J.X. (1995) Regime transitions affecting gas—solids suspensions and fluidized beds Trans. I. Chem. Engr., 73, 154–161

    CAS  Google Scholar 

  • Blackadder, W., Morris, M., Rensfelt, E. and Waldheim, L. (1991) Development of an integrated gasification and hot gas cleaning process using circulating fluidized bed technology, in Circulating Fluidized Bed Technology III (eds P. Basu, M. Horio and M. Hasatani), Pergamon Press, Toronto, pp. 511–517

    Google Scholar 

  • Brereton, C.M.H. and Grace, J.R. (1992) The transition to turbulent fluidization Chem. Eng. Res. Des., 70, 246–251

    CAS  Google Scholar 

  • Chang, D.P.Y., Sorbo, N.W., Murchison, G.S., Adrian, R.C. and Simeroth, D.C. (1987) Evaluation of a pilot-scale circulating fluidized bed combustor as a potential hazardous waste incinerator. J. Air Pollution Control Assoc., 37, 266–274

    CAS  Google Scholar 

  • Clift, R., Grace, J.R. and Weber, M.E. (1978) Bubbles, Drops and Particles, Academic Press, New York

    Google Scholar 

  • Contractor, R.M. (1988) Butane oxidation to maleic anhydride in a circulating solids riser reactor, in Circulating Fluidized Bed Technology II (eds P. Basu and J.F. Large), Pergamon Press, Toronto, pp. 467–477

    Google Scholar 

  • Deng, X.J. (1993) CFPC process, in Preprint for CFB-IV conference (ed. A.A. Avidan), AIChE, New York, pp. 472–477

    Google Scholar 

  • Geldart, D. (1973) Types of gas fluidization. Powder Technol., 7, 185–195

    Article  Google Scholar 

  • Geldart, D. and Abrahamsen, A.R. (1978) Homogeneous fluidization of fine powders using various gases and pressures. Powder Technol., 19, 133–136

    Article  CAS  Google Scholar 

  • Grace, J.R. (1982) Fluidized bed hydrodynamics. Chapter 8.1 in Handbook of Multiphase Flow (ed. G. Hetsroni), Hemisphere, Washington

    Google Scholar 

  • Grace, J.R. (1986) Contacting modes and behaviour classification of gas—solid and other two-phase suspensions. Can. J. Chem. Eng., 64, 353–363

    Article  CAS  Google Scholar 

  • Grace, J.R. and Sun, G. (1991) Influence of particle size distribution on the performance of fluidized bed reactors. Can. J. Chem. Eng., 69, 1126–1134

    Article  CAS  Google Scholar 

  • Graf, R. (1986) First operating experience with a dry flue gas desulphurization process using a circulating fluidized bed, in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Oxford, pp. 317–328

    Google Scholar 

  • Hallstrom, C. and Karlsson, R. (1991) Waste incineration in circulating fluidized bed boilers test results and operating experiences, in Circulating Fluidized Bed Technology III (eds P. Basu, M. Horio and M. Hasatani), Pergamon Press, Toronto, pp. 417–422

    Google Scholar 

  • Hirama, T., Takeuchi, T. and Chiba, T. (1992) Regime classification of macroscopic gas—solid flow in a circulating fluidized-bed riser. Powder Technol., 70, 215–222

    Article  CAS  Google Scholar 

  • Hirsch, M., Janssen, K. and Serbent, H. (1986) The circulating fluidized bed as reactor for chemical and metallurgical processes, in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Oxford, pp. 329–340

    Google Scholar 

  • King, D. (1992) Fluidized catalytic crackers. An engineering review, in Fluidization VII (eds O.E. Potter and D.J. Nicklin), Engineering Foundation, New York

    Google Scholar 

  • Klinzing, G.E. (1981) Gas—Solid Transport McGraw-Hill, New York

    Google Scholar 

  • Konrad, K. (1986) Dense-phase pneumatic conveying: a review. Powder Technol., 49, 1–35

    Article  CAS  Google Scholar 

  • Lancia, A., Nigro, R., Volpicelli, G. and Santoro, L. (1988) Transition from slugging to turbulent flow regimes in fluidized beds detected by means of capacitance probes. Powder Technol., 56, 49–56

    Article  CAS  Google Scholar 

  • Leung, L.S. (1980) Vertical pneumatic conveying: a flow regime diagram and a review of choking versus non-choking systems. Powder Technol., 25, 185–190

    Article  Google Scholar 

  • Lewis, W.K. and Gilliland, E.R. (1950) US patent No. 2, 498, 088

    Google Scholar 

  • Li, Y. and Kwauk, M. (1980) The dynamics of fast fluidization, in Fluidization (eds J.R. Grace and J.M. Matsen), Plenum, New York, pp. 537–544

    Google Scholar 

  • Li, Y., Wang, F. and Tseng, Q. (1990) A new process of preparing anhydrous boric oxide by dehydration of boric acid in a fast fluidized bed. Chem. Reaction Eng. and Technol., 6(2), 43–48

    CAS  Google Scholar 

  • Lippens, B.C. and Mulder, T. (1993) Prediction of minimum fluidization. Powder Technol., 75, 67–78

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, R., Luo, G. and Yang, G.L. (1989) The macrokinetic study on the oxidative dehydrogenation of butene to produce butadiene. Chem. Reaction Eng. and Technol., 5(1), 1–8

    Google Scholar 

  • Louge, M.Y., Mastorakos, E. and Jenkins, J.T. (1991) The role of particle collisions in pneumatic transport J. Fluid Mech., 231, 345–356

    Article  CAS  Google Scholar 

  • Marcus, R.D., Leung, L.S., Klinzing, G.E. and Rizk, F. (1990) Flow regimes in vertical and horizontal conveying. Chapter 5 in Pneumatic Conveying of Solids (eds R.D. Marcus, L.S. Leung, G.E. Klinzing and F. Rizk), Chapman and Hall, New York, pp. 159–191

    Google Scholar 

  • Matsen, T.M. (1982) Mechanisms of choking and entrainment. Powder Technol., 32, 21–33

    Article  Google Scholar 

  • Mei, J.S., Rockey, J.M. and Robey, E.H. (1994) Effects of particle properties on fluidization characteristics of coarse particles, in Circulating Fluidized Bed Technology IV (ed. A.A. Avidan), AIChE, New York, pp. 600–608

    Google Scholar 

  • Park, D.W. and Gau, G. (1986) Simulation of ethylene epoxidation in a multitubular transport reactor. Chem. Eng. Sci., 41, 143–150

    Article  CAS  Google Scholar 

  • Perales, J.F., Coll, T., Llop, M.F., Puigjaner, L., Arnaldos, J. and Casal, J. (1991) On the transition from bubbling to fast fluidization regimes, in Circulating Fluidized Bed Technology III (eds P. Basu, M. Horio and M. Hasatani), Pergamon Press, Toronto, pp.73–78

    Google Scholar 

  • Reh, L. (1971) Fluid bed processing. Chem. Eng. Progr., 67, 58–63

    Google Scholar 

  • Reh, L. (1986) The circulating fluid bed reactor—a key to efficient gas/solid processing, in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Oxford, pp. 105–118

    Google Scholar 

  • Reh, L. (1995) New and efficient high-temperature processes with circulating fluidized bed reactors. Chem. Eng. Technol., 18, 75–89

    Article  CAS  Google Scholar 

  • Rhodes, M.J. (1989) The upward flow of gas/solid suspensions. Part 2: a practical quantitative flow regime diagram for the upward flow of gas/solid suspensions. Chem. Eng. Res. Des., 67, 30–37

    CAS  Google Scholar 

  • Rhodes, M.J. and Geldart, D. (1986a) The hydrodynamics of re-circulating fluidized beds, in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Oxford, pp. 193–200

    Google Scholar 

  • Rhodes, M.J. and Geldart, D. (1986b) Transition to turbulence? in Fluidization V (eds K. Ostergaard and A. Sorensen), Engineering Foundation, New York, pp. 281–288

    Google Scholar 

  • Schnitzlein, M.G. and Weinstein, H. (1988) Flow characterization in high-velocity fluidized beds using pressure fluctuations. Chem. Eng. Sci., 43, 2605–2614

    Article  CAS  Google Scholar 

  • Schoenfelder, H., Hinderer, J., Werther, J. and Keil, F. (1994) Methanol to olefins, prediction of the performance of a circulating fluidized bed reactor on the basis of kinetic experiments in a fixed bed reactor. Chem. Eng. Sci., 49, 5377–5390

    Article  CAS  Google Scholar 

  • Shingles, T. and McDonald, A.F. (1988) Commercial experience with Synthol CFB reactors, in Circulating Fluidized Bed Technology II (eds P. Basu and J.F. Large), Pergamon Press, Toronto, pp. 43–50

    Google Scholar 

  • Squires, A.M. (1986) The story of fluid catalytic cracking: The first circulating fluid bed, in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Oxford, pp. 1–19

    Google Scholar 

  • Squires, A.M. (1994) Origins of the fast fluid bed. Adv. Chem. Eng., 20, 1–37

    Article  CAS  Google Scholar 

  • Squires, A.M., Kwauk, M. and Avidan, A.A. (1985) Fluid beds: at last, challenging two entrenched practices Science, 230, 1329–1337

    Article  CAS  Google Scholar 

  • Stewart, P.S.B. and Davidson, J.F. (1967) Slug flow in fluidized beds. Powder Technol., 1, 61–80

    Article  Google Scholar 

  • Suzuki, S., Kunitomo, K., Hayashi, Y., Egashira, T. and Yamamoto, T. (1990) Iron ore reduction in a circulating fluidized bed Proceedings 2nd Asian Conference on Fluidized-Bed and Three-Phase Reactors pp. 118–125

    Google Scholar 

  • Takeuchi, H., Hirama, L., Chiba, T., Biswas, J. and Leung, L.S. (1986) A quantitative regime diagram for fast fluidization. Powder Technol., 47, 195–199

    Article  CAS  Google Scholar 

  • Wainwright, M.S. and Hoffman, T.W. (1974) The oxidation of 0-xylene in a transported bed reactor. Chem. Reaction Eng. II, Advances in Chem. Sciences (ed. H.M. Hulburt), American Chemical Society, Washington DC, pp. 669–685

    Google Scholar 

  • Wen, C.Y. and Yu, Y.H. (1966) A generalized method for predicting the minimum fluidization velocity. AIChE J., 12, 610–612

    Article  CAS  Google Scholar 

  • Yang, W.C. (1975) A mathematical definition of choking phenomenon and a mathematical model for predicting choking velocity and choking voidage. AIChE J., 21, 1013–1021

    Article  CAS  Google Scholar 

  • Yang, W.C. (1983) Criteria for choking in vertical pneumatic conveying lines. Powder Technol., 35, 143–150

    Article  CAS  Google Scholar 

  • Yerushalmi, J. (1986) High velocity fluidized beds, Chapter 7 in Gas Fluidization Technology (ed. D. Geldart), John Wiley & Sons, Chichester, UK, pp. 155–196

    Google Scholar 

  • Yerushalmi, J. and Cankurt, N.T. (1979) Further studies of the regimes of fluidization Powder Technol., 24, 187–205

    Article  CAS  Google Scholar 

  • Yerushalmi, J., Turner, D.H. and Squires, A.M. (1976) The fast fluidized bed. Ind. Eng. Chem. Process Des. Dev., 15, 47–51

    Article  CAS  Google Scholar 

  • Zenz, F.A. (1949) Two-phase fluidized-solid flow. Ind. Eng. Chem., 41, 2801–2806

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Grace, J.R., Bi, H. (1997). Introduction to Circulating Fluidized Beds. In: Grace, J.R., Avidan, A.A., Knowlton, T.M. (eds) Circulating Fluidized Beds. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0095-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0095-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6530-6

  • Online ISBN: 978-94-009-0095-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics