Skip to main content

Abstract

Restriction Fragment Length Polymorphism (RFLP) analysis is based on two techniques that are widely used in modern molecular biology: the restriction endonuclease digestion of DNA and the transfer of DNA fragments to a filter, onto which can then be hybridized a labelled DNA fragment (1). Type II restriction endonucleases of bacteria recognize and cut specific nucleotide motifs in a DNA sequence (the enzymes commonly used for RFLP analysis recognize 4–6 base-pair sequences). They are, therefore, capable of reducing complex DNA, such as plant DNA, to a population of fragments with discrete sizes. In practice, fragments range in size from a few to more than several thousand base-pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98: 503.

    Article  CAS  Google Scholar 

  2. Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TP, Bow-den DW, Smith DR, Lander ES et al. (1987) A genetic Linkage Map of the Human Genome. Cell 51: 319–337

    Article  CAS  Google Scholar 

  3. Evola SV, Burr FA, Burr B (1986) The suitability of restriction fragment length polymorphisms as genetic markers in maize. Theoretical and Applied Genetics 71: 765–771

    Article  CAS  Google Scholar 

  4. Graner A, Jahoor A, Schondelmaier J, Hiedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map in barley. Theoretical and Applied Genetics 83: 250–256.

    Article  Google Scholar 

  5. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphism. Theoretical and Applied Genetics 72: 761–769.

    Article  CAS  Google Scholar 

  6. Archibald AL, Haley CS, Brown JF, Couper-white S, McQueen HA, Nicholson D, Coppieters W, Van de Weghe A, Stratil A, Wintero AK et al. (1995) The PiGMaP consortium linkage map of pig (Sus scrofa). Mammalian Genome 6: 157–175.

    Article  CAS  Google Scholar 

  7. Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SL, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J et al. (1994) A genetic linkage map for cattle. Genetics 136: 619–639.

    CAS  Google Scholar 

  8. Backes G, Graner A, Foroughi-Wehr B, Fisch-beck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 90: 294–302.

    Article  CAS  Google Scholar 

  9. Burr B, Evola SV, Burr FA, Beckmann JS (1983) The application of restriction fragment length polymorphisms to plant breeding. In: Setlow JK, Hollaender A (eds) Genetic Engineering Principles and Methods, Vol 5. Plenum, New York, pp 45–59.

    Google Scholar 

  10. Helentjaris T, King G, Slocum M, Siedestrang C, Wegman S (1985) Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Molecular Biology 5: 109–118.

    Article  CAS  Google Scholar 

  11. Neuhaus-Url G, Neuhaus G (1993) The use of the non-radioactive digoxigenin chemiluminescent technology for plant genomic Southern blot hybridization: a comparison with radioactivity. Transgenic Research 2: 115–120.

    Article  Google Scholar 

  12. Medveczky P, Chang CW, Oste C, Mulder C (1987) Rapid vacuum driven transfer of DNA and RNA from gels to solid supports. BioTechniques 5: 24.

    Google Scholar 

  13. Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Research 13: 7207.

    Article  CAS  Google Scholar 

  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY; Cold Spring Harbor Laboratory.

    Google Scholar 

  15. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113: 237.

    Article  CAS  Google Scholar 

  16. Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132: 6–13.

    Article  CAS  Google Scholar 

  17. Konat G, Laszkiewicz I, Bednarczuk T, Kanoh M, Wiggins RC (1991) Generation of radioactive and nonradioactive ssDNA hybridization probes by polymerase chain reaction. Technique 3 (2): 64–68.

    CAS  Google Scholar 

  18. Anderson MLM, Young BD (1987) Quantitative filter hybridisation. In: Harnes BD, Higgins SJ (ed) Nucleic acid hybridisation a practical approach. IRL press, Oxford UK, pp 73–111.

    Google Scholar 

  19. Schuster W, Brennicke A (1986) Pseudocopies of the ATPase α-subunit gene in Oenothera mitochondria are present on different circular molecules. Molecular and General Genetics 204: 29–35.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Brettschneider, R. (1998). RFLP Analysis. In: Karp, A., Isaac, P.G., Ingram, D.S. (eds) Molecular Tools for Screening Biodiversity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0019-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0019-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6496-5

  • Online ISBN: 978-94-009-0019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics