Skip to main content

Decision Trees

  • Chapter
  • First Online:
Machine Learning in Medicine

Abstract

Decision trees are widely used in econo-/sociometry for decision analysis of real world problems. It is little used in clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleophas TJ, Zwinderman AH (2012) Linear regression. In: Cleophas TJ, Zwinderman AH (eds) Statistics applied to clinical studies, 5th edn. Springer, Heidelberg, pp 199–203

    Chapter  Google Scholar 

  2. Shannon CE (1951) Prediction and entropy of printed English. Bell Syst Tech J 30:50–64

    Article  Google Scholar 

  3. Quinlan R (1999) Data mining from an A1 perspective. Data engineering 1999. In: Proceedings of the 15th international conference of data engineering, Sydney, Australia, p 186

    Google Scholar 

  4. Perlich C, Provost F, Simonoff JS (2003) Tree induction versus logistic regression. J Mach Learn 4:211–255

    Google Scholar 

  5. Babic S, Kokol P, Stiglic M (2000) Fuzzy decision trees in the support of breastfeeding. In: Proceedings 13th IEEE symposium on computer-based medical systems CBMS, Houston, pp 7–11

    Google Scholar 

  6. Zhang H, Legro R, Zhang J, Zhang L, Chen X, Huang H, Casson P, Schlaff W, Diamond M, Krawetz S, Coutifaris C, Brzyski R, Christman G, Santoro N, Eisenberg E, for the Reproductive Network (2010) Decision trees for identifying predictors of treatment effectiveness in clinical trials and its applications to ovulation in a study of women with polycystic ovary syndrome. Hum Reprod 25:2612–2621

    Article  PubMed  Google Scholar 

  7. Sims C, Meyn L, Caruana R, Rao R, Mitchell T, Krohn M (2000) Predicting caesarean delivery with decision tree models. Am J Obstet Gynecol 183:1198–1206

    Article  PubMed  CAS  Google Scholar 

  8. Tsien C, Kohane L, McIntosh N (2000) Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit. Artif Intell Med 19:189–202

    Article  PubMed  CAS  Google Scholar 

  9. Sanders G, Hagerty C, Sonnenberg F, Hlatkey M, Owens D (2000) Distributed decision support using a web-based interface: prevention of sudden cardiac death. Med Decis Mak 19:157–166

    Article  Google Scholar 

  10. Tsien C, Fraser H, Long W, Kennedy R (1998) Using classification tree and logistic methods to diagnose myocardial infarction. In: Proceedings 9th World Congress on Medical Informatics. MEDINFO’98, vol 52, Amsterdam, pp 493–497

    Google Scholar 

  11. Bonner G (2001) Decision making for health care professionals: use of decision trees within the community mental health setting. J Adv Nurs 35:349–356

    Article  PubMed  CAS  Google Scholar 

  12. Dantchev N (1996) Therapeutic decision trees in psychiatry. Encephale Revue de Psychiatrie Clinique Biologique et Therapeutique 22:205–214

    CAS  Google Scholar 

  13. Gambhir S (1999) Decision analysis in nuclear medicine. J Nucl Med 10:1570–1581

    Google Scholar 

  14. Jones J (2001) The role of data mining technology in the identification of signals of possible adverse drug reactions. Curr Ther Res 62:664–672

    Article  CAS  Google Scholar 

  15. Ohno-Machado L, Lacson R, Massad E (2000) Decision trees and fuzzy logic: a comparison of models for the selection of measles vaccination strategies in Brazil. J Am Med Inform Assoc 9:625–629

    Google Scholar 

  16. Kokol P, Zorman M, Stiglic M, Malcic L (1998) The limitations of decision trees and automatic learning in real world medical decision making. In: Proceedings 9th World Congress on Medical Informatics. MEDINFO’98, vol 52, Amsterdam, pp 529–533

    Google Scholar 

  17. Letourneau S, Jensen L (1998) Impact of a decision tree on chronic wound care. Wound Ostomy Continence Nurs 25:240–247

    Article  CAS  Google Scholar 

  18. Odgorelec V, Kokol P, Stiglic B, Rozman I (2002) Decision trees, an overview and their use in medicine. J Med Syst 26:445–463

    Article  Google Scholar 

  19. SPSS Statistical Software (2013) www.spss.com. 15 July 2013

  20. Anonymous (2011) Creating decision trees. BM Corporation, Armonk

    Google Scholar 

  21. Cleophas TJ, Zwinderman AH (2012) Binary partitioning. In: Cleophas TJ, Zwinderman AH (eds) Machine learning in medicine. Springer, Heidelberg, pp 79–86

    Google Scholar 

  22. Breiman L, Frieman JH, Olsen RA, Stone CJ (1984) Classification and regression trees. Chapman & Hall (Wadsworth Inc.), New York

    Google Scholar 

  23. Cleophas TJ, Zwinderman AH (2012) The limitations of linear regression. In: Cleophas TJ, Zwinderman AH (eds) Statistics applied to clinical studies, 5th edn. Springer, Heidelberg, p 176

    Chapter  Google Scholar 

  24. Breiman L (2001) Random forests. Department of Statistics, University of California, Berkeley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science + Business Media Dordrecht

About this chapter

Cite this chapter

Cleophas, T.J., Zwinderman, A.H. (2013). Decision Trees. In: Machine Learning in Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7869-6_14

Download citation

Publish with us

Policies and ethics