Skip to main content

Plasmonics and Super-Hydrophobicity: A New Class of Nano-Bio-Devices

  • Chapter
  • First Online:
Plasmonics: Theory and Applications

Abstract

Early detection of diseases has great importance in terms of success of the disease treatment. In fact, it has a profound positive influence on the response provided by the patient, leading to shorter and less invasive treatment regimes. We consider here the Raman detection of low (atto-molar) concentrates of molecules by applying nanofabrication techniques in the fabrication of plasmonic devices fulfilling the requirement of superhydrophobicity. Plasmonic resonances will have the effect of substantially increasing the local electric field around the fabricated nano-device which, in turn, will positively affect the Raman signal. Similarly, the superhydrophobicity will play the crucial role in localizing the few molecules of the analyte around the plasmonic device, therefore allowing their detection in a manner otherwise impossible in diffusion-based devices. We will theoretically explain the concept of superhydrophobicity by providing also a roadmap for defining the optimal superhydrophobic device, then we will introduce the fabrication process to realize such a device and, finally, we will provide the Raman counting of a series of analytes together with electromagnetic simulations illustrating the role of the electric field in the formation of the Raman signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. nan’o tech nol’o gy n., Nature nanotechnology 1, 8 (2006).

    Google Scholar 

  2. G.M. Whitesides, The right size in nanobiotechnology. Nat. Biotechnol. 10, 1161 (2003)

    Article  Google Scholar 

  3. F. Gentile, L. Tirinato, E. Battista, F. Causa, C. Liberale, E.M. di Fabrizio, P. Decuzzi, Cells preferentially grow on moderately rough substrates. BioMaterials 31, 7205–7212 (2010)

    Article  CAS  Google Scholar 

  4. F. Perennes et al., Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J. Micromech. Microeng. 16, 473–479 (2006)

    Article  CAS  Google Scholar 

  5. T. Calimeri, E. Battista, F. Conforti, P. Neri, M.T. Di Martino, M. Rossi, U. Foresta, E. Piro, F. Ferrara, A. Amorosi, N. Bahlis, K.C. Anderson, N. Munshi, P. Tagliaferri, F. Causa, P. Tassone, A unique 3-D SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells. LEUKEMIA ISSN 0887–6924 (2011). doi:10.1038/leu.2010.300

  6. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari, Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotechnol. 3, 151–157 (2008)

    Article  CAS  Google Scholar 

  7. F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, E. Di Fabrizio, Water soluble nanoporous nanoparticles for in vivo targeted drug delivery and controlled release in b cells tumor context. Nanoscale 2, 2230–2236 (2010)

    Article  Google Scholar 

  8. M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)

    Article  CAS  Google Scholar 

  9. M. Gaspari et al., Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma. J. Proteome Res. 5, 1261–1266 (2006)

    Article  CAS  Google Scholar 

  10. L.A. Liotta, M. Ferrari, E. Petricoin, Clinical proteomics: written in blood. Nature 425, 905 (2003)

    Article  CAS  Google Scholar 

  11. E.M. Posasadas et al., Proteomic analysis for the early detection and rational treatment of cancer–realistic hope? Ann. Oncol. 16, 16–22 (2005)

    Article  Google Scholar 

  12. G. Das, F. Mecarini, F. Gentile, F. De Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, E. Di Fabrizio, Nano-patterned SERS substrate: application for proteinanalysis vs. temperature. Biosens. Bioelectron. 24, 1693–1699 (2009)

    Article  CAS  Google Scholar 

  13. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L.C. Andreani, E. Di Fabrizio, A hybrid plasmonic photonic nanodevice for label-free detection of a few molecules. Nano Lett. 8, 2321–2327 (2008)

    Article  Google Scholar 

  14. A.J. Babadjanyan, N.L. Margaryan, KhV Nerkararyan, J. Appl. Phys. 87, 3785 (2000)

    Article  CAS  Google Scholar 

  15. M.I. Stockman Phys, Rev. Lett. 93, 137404 (2004)

    Article  Google Scholar 

  16. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L.C. Andreani, E. Di Fabrizio, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotech. 5, 67–72 (2010)

    Article  Google Scholar 

  17. F. De Angelis, C. Liberale, M.L. Coluccio, G. Cojoc, E. Di Fabrizio, Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale 3, 2689–2696 (2011)

    Article  Google Scholar 

  18. F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, E. Di Fabrizio, Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers. Opt. Exp. 19, 22268 (2011)

    Article  Google Scholar 

  19. R. Proietti Zaccaria, F. De Angelis, A. Toma, L. Razzari, A. Alabastri, G. Das, C. Liberale, E. Di Fabrizio, Surface plasmon polariton compression through radially and linearly polarized source. Opt. Lett. 37, 545 (2012)

    Article  Google Scholar 

  20. R. Proietti Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H.B. Sun, E. Di Fabrizio, Fully analytical description of adiabatic compression in dissipative polaritonic structures. Phys. Rev. B 86, 035410 (2012)

    Article  Google Scholar 

  21. K. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. Lett. 91, 227402 (2003)

    Article  Google Scholar 

  22. D.A. Weitz, T.J. Gramila, A.Z. Genack, J.I. Gersten, Anomalous low-frequency Raman scattering from rough metal surfaces and the origin of surface-enhanced Raman scattering. Phys. Rev. Lett. 45(5), 355–358 (1980)

    Article  CAS  Google Scholar 

  23. M.L. Coluccio, G. Das, F. Mecarini, F. Gentile, A. Pujia, L. Bava, R. Tallerico, P. Candeloro, C. Liberale, F. De Angelis, E. Di Fabrizio, Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron. Eng. 86, 1085–1088 (2009)

    Article  CAS  Google Scholar 

  24. R. Blossey, Self-cleaning surfaces-virtual realities, Nat. Mater. 2, 301–306 (2003).

    Google Scholar 

  25. G. McHale, N.J. Shirtcliffe, M.I. Newton, Super-hydrophobic and super-wetting surfaces: analytical potential? Analyst 129, 284 (2004)

    Article  CAS  Google Scholar 

  26. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. Proietti Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super hydrophobic delivery of few molecules to plasmonic nanofocusing structures. Nat. Photonics 5, 682 (2011)

    Article  Google Scholar 

  27. F. Gentile, M. L. Coluccio, N. Coppedè, F. Mecarini, G. Das., C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio, ACS Appl. Mat. Interf. 4, 3213 (2012).

    Google Scholar 

  28. E.G. Shafrin, W.A. Zisman, in Contact Angle, Wettability and Adhesion Advances in Chemistry Series, vol. 43, ed. F. M. Fowkes (American Chemical Society, Washington D.C., 1964) , pp. 145–167

    Google Scholar 

  29. A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)

    Article  CAS  Google Scholar 

  30. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)

    Article  CAS  Google Scholar 

  31. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  CAS  Google Scholar 

  32. J. Bico, U. Thiele, D. Quéré , Wetting of textured surfaces, Colloids Surf.A 206, 41–46 (2002)

    Google Scholar 

  33. A.N. Patankar, Transition between superhydrophobic states on rough surfaces, Langmuir 20, 7097–7102 (2004)

    Google Scholar 

  34. M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys.: Condens. Matter 20, 395005 (2008)

    Google Scholar 

  35. I.R. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups (Springer-Verlag, New York Inc, 1999, 1998, 1993)

    Google Scholar 

  36. L. Mahadevan, Y. Pomeau, Rolling droplets. Phys. Fluids 11, 2449 (1999)

    Article  CAS  Google Scholar 

  37. E.B. Dussan, T.P.R. Chow, On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137, 1–29 (1983)

    Article  Google Scholar 

  38. D. Quéré, A. Lafuma, J. Bico, Slippy and sticky microtextured solids, Nanotechnology 14, 1109–1112 (2003)

    Google Scholar 

  39. P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Google Scholar 

  40. H. Kusumaatmaja, M.L. Blow, A. Dupuis, J.M. Yeomans, The collapse transition on superhydrophobic surfaces. Eur. Phys. Lett. 81, 36003 (2008)

    Article  Google Scholar 

  41. S. Moulinet, D. Bartolo, Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces. Eur. Phys. J. E 24, 251–260 (2007)

    Article  CAS  Google Scholar 

  42. M. Reyssat, J.M. Yeomans, D. Quéré, Impalement of fakir drops. Eur. Phys. Lett. 81, 26006 (2008)

    Article  Google Scholar 

  43. D. Deegan et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997)

    Article  CAS  Google Scholar 

  44. D. Deegan et al., Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000)

    Article  CAS  Google Scholar 

  45. F.J. Garcia-Vidal, J.B. Pendry, Collective theory of surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996)

    Article  CAS  Google Scholar 

  46. A.D. Rakic, A.B. Djurisic, J.M. elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998)

    Google Scholar 

Download references

Acknowledgments

This work was funded under European Project SMD FP7-NMP 2800-SMALL-2 (proposal no. CP-FP 229375-2), Italian project FIRB ‘Rete Nazionale di Ricerca sulle Nanoscienze ItalNanoNet’ (cod. RBPR05JH2P-010) and by the EU Commission, the European Social Fund and the Calabria Region (POR Calabria FSE 2007-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Di Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gentile, F. et al. (2013). Plasmonics and Super-Hydrophobicity: A New Class of Nano-Bio-Devices. In: Shahbazyan, T., Stockman, M. (eds) Plasmonics: Theory and Applications. Challenges and Advances in Computational Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7805-4_14

Download citation

Publish with us

Policies and ethics