Skip to main content

Mark/Par-1 Marking the Polarity of Migrating Neurons

  • Chapter
  • First Online:
Cellular and Molecular Control of Neuronal Migration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 800))

Abstract

Proper brain development requires the orchestrated migration of neurons from their place of birth to their final positioning, where they will form appropriate connections with their target cells. These events require coordinated activity of multiple elements of the cytoskeleton, in which the MARK/Par-1 polarity kinase plays an important role. Here, the various roles and modes of regulation of MARK/Par-1 are reviewed. MARK/Par-1 participates in axon formation in primary hippocampal neurons. Balanced levels of MARK/Par-1 are required for proper radial migration, as well as for migration in the rostral migratory stream. Normal neuronal migration requires at least two of MARK/Par-1 substrates, DCX and tau. Overall, the positioning of MARK/Par-1 at the crosstalk of regulating cytoskeletal dynamics allows its participation in neuronal polarity decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–457. doi:10.1002/cne.901370404

    PubMed  CAS  Google Scholar 

  • Angevine JB, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    PubMed  Google Scholar 

  • Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8(3):194–205. doi:10.1038/nrn2056

    PubMed  CAS  Google Scholar 

  • Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384. doi:10.1152/physrev.00024.2003 84/2/361 [pii]

    PubMed  CAS  Google Scholar 

  • Ayala R, Shu T, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128(1):29–43. doi:S0092-8674(06)01648-5 [pii] 10.1016/j.cell.2006.12.021

    PubMed  CAS  Google Scholar 

  • Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ (2003) RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 6(12):1277–1283

    PubMed  CAS  Google Scholar 

  • Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN, Sanes JR, Polleux F (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129(3):549–563. doi:S0092-8674(07)00391-1 [pii] 10.1016/j.cell.2007.03.025

    PubMed  CAS  Google Scholar 

  • Barnes AP, Solecki D, Polleux F (2008) New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr Opin Neurobiol 18(1):44–52. doi:S0959-4388(08)00031-7 [pii] 10.1016/j.conb.2008.05.003

    PubMed  CAS  Google Scholar 

  • Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25(24):5691–5699. doi:25/24/5691 [pii] 10.1523/JNEUROSCI.1030-05.2005

    PubMed  CAS  Google Scholar 

  • Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14(16):R674–R685

    PubMed  CAS  Google Scholar 

  • Bielas SL, Serneo FF, Chechlacz M, Deerinck TJ, Perkins GA, Allen PB, Ellisman MH, Gleeson JG (2007) Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 129(3):579–591. doi:10.1016/j.cell.2007.03.023

    PubMed  CAS  Google Scholar 

  • Biernat J, Gustke N, Drewes G, Mandelkow E-M, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11:153–163

    PubMed  CAS  Google Scholar 

  • Biernat J, Wu YZ, Timm T, Zheng-Fischhofer Q, Mandelkow E, Meijer L, Mandelkow EM (2002) Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13(11):4013–4028

    PubMed  CAS  Google Scholar 

  • Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323(Pt 3):577–591

    PubMed  CAS  Google Scholar 

  • Bright NJ, Thornton C, Carling D (2009) The regulation and function of mammalian AMPK-related kinases. Acta Physiol 196(1):15–26. doi:10.1111/j.1748-1716.2009.01971.x

    CAS  Google Scholar 

  • Brodtkorb E, Nilsen G, Smevik O, Rinck PA (1992) Epilepsy and anomalies of neuronal migration: MRI and clinical aspects. Acta Neurol Scand 86(1):24–32

    PubMed  CAS  Google Scholar 

  • Chen YM, Wang QJ, Hu HS, Yu PC, Zhu J, Drewes G, Piwnica-Worms H, Luo ZG (2006) Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci U S A 103(22):8534–8539. doi:0509955103 [pii] 10.1073/pnas.0509955103

    PubMed  CAS  Google Scholar 

  • Chen S, Chen J, Shi H, Wei M, Castaneda-Castellanos DR, Bultje RS, Pei X, Kriegstein AR, Zhang M, Shi SH (2013) Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity. Dev Cell 24(1):26–40. doi:10.1016/j.devcel.2012.11.014

    PubMed  CAS  Google Scholar 

  • Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166

    PubMed  CAS  Google Scholar 

  • Cohen D, Musch A (2003) Apical surface formation in MDCK cells: regulation by the serine/threonine kinase EMK1. Methods 30(3):269–276

    PubMed  CAS  Google Scholar 

  • Cohen D, Brennwald PJ, Rodriguez-Boulan E, Musch A (2004a) Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J Cell Biol 164(5):717–727

    PubMed  CAS  Google Scholar 

  • Cohen D, Rodriguez-Boulan E, Musch A (2004b) Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc Natl Acad Sci U S A 101(38):13792–13797

    PubMed  CAS  Google Scholar 

  • D’Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM, Bird TD, Schellenberg GD (1999) Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci U S A 96(10):5598–5603

    PubMed  Google Scholar 

  • Doerflinger H, Benton R, Shulman JM, St Johnston D (2003) The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 130(17):3965–3975

    PubMed  CAS  Google Scholar 

  • Doerflinger H, Benton R, Torres IL, Zwart MF, St Johnston D (2006) Drosophila anterior-posterior polarity requires actin-dependent PAR-1 recruitment to the oocyte posterior. Curr Biol 16(11):1090–1095. doi:10.1016/j.cub.2006.04.001

    PubMed  CAS  Google Scholar 

  • Doerflinger H, Vogt N, Torres IL, Mirouse V, Koch I, Nusslein-Volhard C, St Johnston D (2010) Bazooka is required for polarisation of the Drosophila anterior-posterior axis. Development 137(10):1765–1773. doi:10.1242/dev.045807

    PubMed  CAS  Google Scholar 

  • Drewes G (2004) MARKing tau for tangles and toxicity. Trends Biochem Sci 29(10):548–555

    PubMed  CAS  Google Scholar 

  • Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89(2):297–308

    PubMed  CAS  Google Scholar 

  • Drewes G, Ebneth A, Mandelkow EM (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23(8):307–311

    PubMed  CAS  Google Scholar 

  • Espinosa L, Navarro E (1998) Human serine/threonine protein kinase EMK1: genomic structure and cDNA cloning of isoforms produced by alternative splicing. Cytogenet Cell Genet 81(3–4):278–282

    PubMed  CAS  Google Scholar 

  • Euteneuer U, Schliwa M (1985) Evidence for an involvement of actin in the positioning and motility of centrosomes. J Cell Biol 101(1):96–103

    PubMed  CAS  Google Scholar 

  • Goransson O, Deak M, Wullschleger S, Morrice NA, Prescott AR, Alessi DR (2006) Regulation of the polarity kinases PAR-1/MARK by 14-3-3 interaction and phosphorylation. J Cell Sci 119(Pt 19):4059–4070. doi:10.1242/jcs.03097

    PubMed  CAS  Google Scholar 

  • Grisart B, Willatt L, Destree A, Fryns JP, Rack K, de Ravel T, Rosenfeld J, Vermeesch JR, Verellen-Dumoulin C, Sandford R (2009) 17q21.31 microduplication patients are characterised by behavioural problems and poor social interaction. J Med Genet 46(8):524–530

    PubMed  CAS  Google Scholar 

  • Gupta A, Tsai LH, Wynshaw-Boris A (2002) Life is a journey: a genetic look at neocortical development. Nat Rev Genet 3(5):342–355

    PubMed  CAS  Google Scholar 

  • Hardiman O, Burke T, Phillips J, Murphy S, O’Moore B, Staunton H, Farrell MA (1988) Microdysgenesis in resected temporal neocortex: incidence and clinical significance in focal epilepsy. Neurology 38(7):1041–1047

    PubMed  CAS  Google Scholar 

  • Hauser WA, Annegers JF, Kurland LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34(3):453–468

    PubMed  CAS  Google Scholar 

  • Hayashi K, Suzuki A, Ohno S (2011) A novel function of the cell polarity-regulating kinase PAR-1/MARK in dendritic spines. Bioarchitecture 1(6):261–266. doi:10.4161/bioa.1.6.19199

    PubMed  Google Scholar 

  • Hernandez F, Avila J (2007) Tauopathies. Cell Mol Life Sci 64(17):2219–2233

    PubMed  CAS  Google Scholar 

  • Hurov J, Piwnica-Worms H (2007) The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle 6(16):1966–1969

    PubMed  CAS  Google Scholar 

  • Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14(8):736–741. doi:10.1016/j.cub.2004.04.007

    PubMed  CAS  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705

    PubMed  CAS  Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397

    PubMed  CAS  Google Scholar 

  • Jean C, Tollon Y, Raynaud-Messina B, Wright M (1999) The mammalian interphase centrosome: two independent units maintained together by the dynamics of the microtubule cytoskeleton. Eur J Cell Biol 78(8):549–560

    PubMed  CAS  Google Scholar 

  • Jiang H, Guo W, Liang X, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120(1):123–135. doi:S0092867404012589 [pii] 10.1016/j.cell.2004.12.033

    PubMed  CAS  Google Scholar 

  • Johne C, Matenia D, Li XY, Timm T, Balusamy K, Mandelkow EM (2008) Spred1 and TESK1 – two new interaction partners of the kinase MARKK/TAO1 that link the microtubule and actin cytoskeleton. Mol Biol Cell 19:1391–1403

    PubMed  CAS  Google Scholar 

  • Jones N (2010) PINK1 targets dysfunctional mitochondria for autophagy in Parkinson disease. Nat Rev 6(4):181

    Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16(18):5583–5592

    PubMed  CAS  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52(3):311–320

    PubMed  CAS  Google Scholar 

  • Kirchhoff M, Bisgaard AM, Duno M, Hansen FJ, Schwartz M (2007) A 17q21.31 microduplication, reciprocal to the newly described 17q21.31 microdeletion, in a girl with severe psychomotor developmental delay and dysmorphic craniofacial features. Eur J Med Genet 50(4):256–263

    PubMed  Google Scholar 

  • Kishi M, Pan YA, Crump JG, Sanes JR (2005) Mammalian SAD kinases are required for neuronal polarization. Science 307(5711):929–932

    PubMed  CAS  Google Scholar 

  • Koizumi H, Tanaka T, Gleeson JG (2006) Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron 49(1):55–66

    PubMed  CAS  Google Scholar 

  • Konzack S, Thies E, Marx A, Mandelkow EM, Mandelkow E (2007) Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J Neurosci 27(37):9916–9927

    PubMed  CAS  Google Scholar 

  • Koolen DA, Vissers LE, Pfundt R, de Leeuw N, Knight SJ, Regan R, Kooy RF, Reyniers E, Romano C, Fichera M, Schinzel A, Baumer A, Anderlid BM, Schoumans J, Knoers NV, van Kessel AG, Sistermans EA, Veltman JA, Brunner HG, de Vries BB (2006) A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 38(9):999–1001

    PubMed  CAS  Google Scholar 

  • Koolen DA, Sharp AJ, Hurst JA, Firth HV, Knight SJ, Goldenberg A, Saugier-Veber P, Pfundt R, Vissers LE, Destree A, Grisart B, Rooms L, Van der Aa N, Field M, Hackett A, Bell K, Nowaczyk MJ, Mancini GM, Poddighe PJ, Schwartz CE, Rossi E, De Gregori M, Antonacci-Fulton LL, McLellan MD 2nd, Garrett JM, Wiechert MA, Miner TL, Crosby S, Ciccone R, Willatt L, Rauch A, Zenker M, Aradhya S, Manning MA, Strom TM, Wagenstaller J, Krepischi-Santos AC, Vianna-Morgante AM, Rosenberg C, Price SM, Stewart H, Shaw-Smith C, Brunner HG, Wilkie AO, Veltman JA, Zuffardi O, Eichler EE, de Vries BB (2008) Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J Med Genet 45(11):710–720

    PubMed  CAS  Google Scholar 

  • Kosuga S, Tashiro E, Kajioka T, Ueki M, Shimizu Y, Imoto M (2005) GSK-3beta directly phosphorylates and activates MARK2/PAR-1. J Biol Chem 280(52):42715–42722

    PubMed  CAS  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27(7):392–399

    PubMed  CAS  Google Scholar 

  • Lee S, Wang JW, Yu W, Lu B (2012) Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Abeta toxicity in Drosophila. Nat Commun 3:1312. doi:10.1038/ncomms2278

    PubMed  Google Scholar 

  • Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30(23):4825–4837. doi:10.1038/emboj.2011.376

    PubMed  CAS  Google Scholar 

  • Lian G, Sheen V (2006) Cerebral developmental disorders. Curr Opin Pediatr 18(6):614–620. doi:10.1097/MOP.0b013e328010542d

    PubMed  Google Scholar 

  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23(4):833–843

    PubMed  CAS  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193

    PubMed  CAS  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981

    PubMed  CAS  Google Scholar 

  • LoTurco JJ, Bai J (2006) The multipolar stage and disruptions in neuronal migration. Trends Neurosci 29(7):407–413. doi:S0166-2236(06)00094-4 [pii] 10.1016/j.tins.2006.05.006

    PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    PubMed  CAS  Google Scholar 

  • Ma X, Kawamoto S, Hara Y, Adelstein RS (2004) A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol Biol Cell 15(6):2568–2579. doi:10.1091/mbc.E03-11-0836 E03-11-0836 [pii]

    PubMed  CAS  Google Scholar 

  • Macara IG (2004) Parsing the polarity code. Nat Rev Mol Cell Biol 5(3):220–231

    PubMed  CAS  Google Scholar 

  • Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8(11):425–427

    PubMed  CAS  Google Scholar 

  • Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E (2004) MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 167(1):99–110

    PubMed  CAS  Google Scholar 

  • Mandell JW, Banker GA (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16(18):5727–5740

    PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790

    PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    PubMed  CAS  Google Scholar 

  • Marx A, Nugoor C, Panneerselvam S, Mandelkow E (2010) Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J 24(6):1637–1648. doi:10.1096/fj.09-148064

    PubMed  CAS  Google Scholar 

  • Matenia D, Mandelkow EM (2009) The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 34(7):332–342. doi:10.1016/j.tibs.2009.03.008

    PubMed  CAS  Google Scholar 

  • Matenia D, Griesshaber B, Li XY, Thiessen A, Johne C, Jiao J, Mandelkow E, Mandelkow EM (2005) PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell 16(9):4410–4422

    PubMed  CAS  Google Scholar 

  • Matenia D, Hempp C, Timm T, Eikhof A, Mandelkow EM (2012) Microtubule affinity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: effects on mitochondrial transport. J Biol Chem 287(11):8174–8186. doi:10.1074/jbc.M111.262287

    PubMed  CAS  Google Scholar 

  • Maussion G, Carayol J, Lepagnol-Bestel AM, Tores F, Loe-Mie Y, Milbreta U, Rousseau F, Fontaine K, Renaud J, Moalic JM, Philippi A, Chedotal A, Gorwood P, Ramoz N, Hager J, Simonneau M (2008) Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. Hum Mol Genet 17(16):2541–2551

    PubMed  CAS  Google Scholar 

  • McConnell SK (1991) The generation of neuronal diversity in the central nervous system. Annu Rev Neurosci 14:269–300

    PubMed  CAS  Google Scholar 

  • Mejia-Gervacio S, Murray K, Sapir T, Belvindrah R, Reiner O, Lledo PM (2011) MARK2/Par-1 guides the directionality of neuroblasts migrating to the olfactory bulb. Mol Cell Neurosci 49(2):97–103. doi:10.1016/j.mcn.2011.10.006

    PubMed  Google Scholar 

  • Meraldi P, Nigg EA (2001) Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 114(Pt 20):3749–3757

    PubMed  CAS  Google Scholar 

  • Mi J, Guo C, Brautigan DL, Larner JM (2007) Protein phosphatase-1alpha regulates centrosome splitting through Nek2. Cancer Res 67(3):1082–1089

    PubMed  CAS  Google Scholar 

  • Moravcevic K, Mendrola JM, Schmitz KR, Wang YH, Slochower D, Janmey PA, Lemmon MA (2010) Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 143(6):966–977. doi:S0092-8674(10)01308-5 [pii] 10.1016/j.cell.2010.11.028

    PubMed  CAS  Google Scholar 

  • Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr, Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. doi:29/41/12776 [pii] 10.1523/JNEUROSCI.3463-09.2009

    PubMed  CAS  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70(3):410–426. doi:10.1016/j.neuron.2011.04.009

    PubMed  CAS  Google Scholar 

  • Munro EM (2006) PAR proteins and the cytoskeleton: a marriage of equals. Curr Opin Cell Biol 18(1):86–94. doi:10.1016/j.ceb.2005.12.007

    PubMed  CAS  Google Scholar 

  • Murphy JM, Korzhnev DM, Ceccarelli DF, Briant DJ, Zarrine-Afsar A, Sicheri F, Kay LE, Pawson T (2007) Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain. Proc Natl Acad Sci U S A 104(36):14336–14341. doi:10.1073/pnas.0703012104

    PubMed  CAS  Google Scholar 

  • Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3(6):423–432. doi:10.1038/nrn845 nrn845 [pii]

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Applegate K, Davidson MW, Danuser G, Waterman CM (2012) Automated screening of microtubule growth dynamics identifies MARK2 as a regulator of leading edge microtubules downstream of Rac1 in migrating cells. PloS One 7(7):e41413. doi:10.1371/journal.pone.0041413

    PubMed  CAS  Google Scholar 

  • Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161

    PubMed  CAS  Google Scholar 

  • Polleux F, Snider W (2010) Initiating and growing an axon. Cold Spring Harb Perspect Biol 2(4):a001925. doi:10.1101/cshperspect.a001925

    PubMed  CAS  Google Scholar 

  • Rademakers R, Cruts M, van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24(4):277–295

    PubMed  CAS  Google Scholar 

  • Ramos RL, Bai J, LoTurco JJ (2006) Heterotopia formation in rat but not mouse neocortex after RNA interference knockdown of DCX. Cereb Cortex 16(9):1323–1331. doi:10.1093/cercor/bhj074

    PubMed  Google Scholar 

  • Reiner O (2013) LIS1 and DCX: implications for brain development and human disease in relation to microtubules. Scientifica 2013:17. doi:10.1155/2013/393975

    Google Scholar 

  • Reiner O, Gerlitz G (2013) Nucleokinesis. Developmental neuroscience: a comprehensive reference, vol 1. Elsevier Limited, Oxford. doi:10.1016/B978-0-12-375711-1.00022-2

    Google Scholar 

  • Reiner O, Sapir T (2009) Polarity regulation in migrating neurons in the cortex. Mol Neurobiol 40(1):1–14. doi:10.1007/s12035-009-8065-0

    PubMed  CAS  Google Scholar 

  • Reiner O, Gorelik A, Greenman R (2012) Use of RNA interference by in utero electroporation to study cortical development: the example of the doublecortin superfamily. Genes 3(4):759–778

    CAS  Google Scholar 

  • Rose LS, Kemphues KJ (1998) Early patterning of the C. elegans embryo. Annu Rev Genet 32:521–545

    PubMed  CAS  Google Scholar 

  • Sapir T, Sapoznik S, Levy T, Finkelshtein D, Shmueli A, Timm T, Mandelkow EM, Reiner O (2008a) Accurate balance of the polarity kinase MARK2/Par-1 is required for proper cortical neuronal migration. J Neurosci 28(22):5710–5720. doi:28/22/5710 [pii] 10.1523/JNEUROSCI.0911-08.2008

    PubMed  CAS  Google Scholar 

  • Sapir T, Shmueli A, Levy T, Timm T, Elbaum M, Mandelkow EM, Reiner O (2008b) Antagonistic effects of doublecortin and MARK2/Par-1 in the developing cerebral cortex. J Neurosci 28(48):13008–13013. doi:28/48/13008 [pii] 10.1523/JNEUROSCI.2363-08.2008

    PubMed  CAS  Google Scholar 

  • Sapir T, Frotscher M, Levy T, Mandelkow EM, Reiner O (2012) Tau’s role in the developing brain: implications for intellectual disability. Hum Mol Genet 21(8):1681–1692. doi:10.1093/hmg/ddr603

    PubMed  CAS  Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102(38):13652–13657. doi:0506008102 [pii] 10.1073/pnas.0506008102

    PubMed  CAS  Google Scholar 

  • Schaar BT, Kinoshita K, McConnell SK (2004) Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41(2):203–213. doi:S0896627303008432 [pii]

    PubMed  CAS  Google Scholar 

  • Segu L, Pascaud A, Costet P, Darmon M, Buhot MC (2008) Impairment of spatial learning and memory in ELKL Motif Kinase1 (EMK1/MARK2) knockout mice. Neurobiol Aging 29(2):231–240

    PubMed  CAS  Google Scholar 

  • Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, Stewart H, Price SM, Blair E, Hennekam RC, Fitzpatrick CA, Segraves R, Richmond TA, Guiver C, Albertson DG, Pinkel D, Eis PS, Schwartz S, Knight SJ, Eichler EE (2006) Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 38(9):1038–1042

    PubMed  CAS  Google Scholar 

  • Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S, Curley R, Cumming S, Dunn C, Kalaitzopoulos D, Porter K, Prigmore E, Krepischi-Santos AC, Varela MC, Koiffmann CP, Lees AJ, Rosenberg C, Firth HV, de Silva R, Carter NP (2006) Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet 38(9):1032–1037

    PubMed  CAS  Google Scholar 

  • Shmueli A, Gdalyahu A, Sapoznik S, Sapir T, Tsukada M, Reiner O (2006) Site-specific dephosphorylation of doublecortin (DCX) by protein phosphatase 1 (PP1). Mol Cell Neurosci 32(1–2):15–26. doi:S1044-7431(06)00030-3 [pii] 10.1016/j.mcn.2006.01.014

    PubMed  CAS  Google Scholar 

  • Solecki DJ, Govek EE, Tomoda T, Hatten ME (2006) Neuronal polarity in CNS development. Genes Dev 20(19):2639–2647

    PubMed  CAS  Google Scholar 

  • Surveys OoPCa (1989) The prevalence of disability among children. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S (2004) APKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14(16):1425–1435

    PubMed  CAS  Google Scholar 

  • Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D’Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 31(7):2511–2525. doi:10.1523/JNEUROSCI.5245-10.2011

    PubMed  CAS  Google Scholar 

  • Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23(31):9996–10001

    PubMed  CAS  Google Scholar 

  • Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S (1998) Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125(18):3607–3614

    PubMed  CAS  Google Scholar 

  • Tassan JP, Le Goff X (2004) An overview of the KIN1/PAR-1/MARK kinase family. Biol Cell 96(3):193–199. doi:10.1016/j.biolcel.2003.10.009

    PubMed  CAS  Google Scholar 

  • Terabayashi T, Itoh TJ, Yamaguchi H, Yoshimura Y, Funato Y, Ohno S, Miki H (2007) Polarity-regulating kinase partitioning-defective 1/microtubule affinity-regulating kinase 2 negatively regulates development of dendrites on hippocampal neurons. J Neurosci 27(48):13098–13107

    PubMed  CAS  Google Scholar 

  • Thies E, Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27(11):2896–2907

    PubMed  CAS  Google Scholar 

  • Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA (2004) Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol 6(4):335–342

    PubMed  CAS  Google Scholar 

  • Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, Mandelkow EM (2003) MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 22(19):5090–5101

    PubMed  CAS  Google Scholar 

  • Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM (2006) Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis 3(4–5):207–217

    PubMed  CAS  Google Scholar 

  • Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM (2008a) Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem 283(27):18873–18882

    PubMed  CAS  Google Scholar 

  • Timm T, Marx A, Panneerselvam S, Mandelkow E, Mandelkow EM (2008b) Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci 9(Suppl 2):S9. doi:10.1186/1471-2202-9-S2-S9

    PubMed  Google Scholar 

  • Timm T, von Kries JP, Li X, Zempel H, Mandelkow E, Mandelkow EM (2011) Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential. J Biol Chem 286(48):41711–41722. doi:10.1074/jbc.M111.257865

    PubMed  CAS  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46(3):383–388

    PubMed  CAS  Google Scholar 

  • Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10(8):970–979. doi:nn1934 [pii] 10.1038/nn1934

    PubMed  CAS  Google Scholar 

  • Tsukada M, Prokscha A, Oldekamp J, Eichele G (2003) Identification of neurabin II as a novel doublecortin interacting protein. Mech Dev 120(9):1033–1043

    PubMed  CAS  Google Scholar 

  • Tsukada M, Prokscha A, Ungewickell E, Eichele G (2005) Doublecortin association with actin filaments is regulated by Neurabin II. J Biol Chem 280(12):11361–11368

    PubMed  CAS  Google Scholar 

  • Uzbekov R, Kireyev I, Prigent C (2002) Centrosome separation: respective role of microtubules and actin filaments. Biol Cell 94(4–5):275–288

    PubMed  CAS  Google Scholar 

  • Vallee RB, Tsai JW (2006) The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes Dev 20(11):1384–1393. doi:20/11/1384 [pii] 10.1101/gad.1417206

    PubMed  CAS  Google Scholar 

  • Varela MC, Krepischi-Santos AC, Paz JA, Knijnenburg J, Szuhai K, Rosenberg C, Koiffmann CP (2006) A 17q21.31 microdeletion encompassing the MAPT gene in a mentally impaired patient. Cytogenet Genome Res 114(1):89–92

    PubMed  CAS  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107(1):378–383

    PubMed  CAS  Google Scholar 

  • Walsh CA (1999) Genetic malformations of the human cerebral cortex. Neuron 23:19–29

    PubMed  CAS  Google Scholar 

  • Watkins JL, Lewandowski KT, Meek SE, Storz P, Toker A, Piwnica-Worms H (2008) Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association. Proc Natl Acad Sci U S A 105(47):18378–18383. doi:10.1073/pnas.0809661105

    PubMed  CAS  Google Scholar 

  • Witte H, Bradke F (2008) The role of the cytoskeleton during neuronal polarization. Curr Opin Neurobiol 18(5):479–487. doi:S0959-4388(08)00126-8 [pii] 10.1016/j.conb.2008.09.019

    PubMed  CAS  Google Scholar 

  • Wu Q, Dibona VL, Bernard LP, Zhang H (2012) The polarity protein partitioning-defective 1 (PAR-1) regulates dendritic spine morphogenesis through phosphorylating postsynaptic density protein 95 (PSD-95). J Biol Chem 287(36):30781–30788. doi:10.1074/jbc.M112.351452

    PubMed  CAS  Google Scholar 

  • Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149. doi:S009286740401058X [pii] 10.1016/j.cell.2004.11.012

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

 O.R. is an Incumbent of the Berstein-Mason professorial chair of Neurochemistry. Our research has been supported in part by the Israel Science Foundation (grant no. 47/10), Minerva foundation with funding from the Federal German Ministry for Education and Research, a grant from the Chief Scientist Office at the Israeli Ministry of Health, under the frame of ERA-Net NEURON (DISCover, IMOS 3-00000-6785), Fritz-Thyseen Foundation (grant Az. 10.11.2.161), the Benoziyo Center for Neurological diseases, the Helen and Martin Kimmel Stem Cell Research Institute, and the David and Fela Shapell Family Center for Genetic Disorders Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Orly Reiner or Tamar Sapir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reiner, O., Sapir, T. (2014). Mark/Par-1 Marking the Polarity of Migrating Neurons. In: Nguyen, L., Hippenmeyer, S. (eds) Cellular and Molecular Control of Neuronal Migration. Advances in Experimental Medicine and Biology, vol 800. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7687-6_6

Download citation

Publish with us

Policies and ethics