Skip to main content

Molecular Pathways Controlling the Sequential Steps of Cortical Projection Neuron Migration

  • Chapter
  • First Online:
Cellular and Molecular Control of Neuronal Migration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 800))

Abstract

Coordinated migration of newly-born neurons to their target territories is essential for correct neuronal circuit assembly in the developing brain. Although a cohort of signaling pathways has been implicated in the regulation of cortical projection neuron migration, the precise molecular mechanisms and how a balanced interplay of cell-autonomous and non-autonomous functions of candidate signaling molecules controls the discrete steps in the migration process, are just being revealed. In this chapter, I will focally review recent advances that improved our understanding of the cell-autonomous and possible cell-nonautonomous functions of the evolutionarily conserved LIS1/NDEL1-complex in regulating the sequential steps of cortical projection neuron migration. I will then elaborate on the emerging concept that the Reelin signaling pathway, acts exactly at precise stages in the course of cortical projection neuron migration. Lastly, I will discuss how finely tuned transcriptional programs and downstream effectors govern particular aspects in driving radial migration at discrete stages and how they regulate the precise positioning of cortical projection neurons in the developing cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218. doi:10.1146/annurev.ne.17.030194.001153

    PubMed  CAS  Google Scholar 

  • Angevine JB Jr, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    PubMed  Google Scholar 

  • Aoki K, Meng G, Suzuki K, Takashi T, Kameoka Y, Nakahara K, Ishida R, Kasai M (1998) RP58 associates with condensed chromatin and mediates a sequence-specific transcriptional repression. J Biol Chem 273(41):26698–26704

    PubMed  CAS  Google Scholar 

  • Arnaud L, Ballif BA, Forster E, Cooper JA (2003) Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13(1):9–17

    PubMed  CAS  Google Scholar 

  • Assadi AH, Zhang G, Beffert U, McNeil RS, Renfro AL, Niu S, Quattrocchi CC, Antalffy BA, Sheldon M, Armstrong DD, Wynshaw-Boris A, Herz J, D’Arcangelo G, Clark GD (2003) Interaction of Reelin signaling and Lis1 in brain development. Nat Genet 35(3):270–276. doi:10.1038/ng1257 ng1257 [pii]

    PubMed  CAS  Google Scholar 

  • Ayala R, Shu T, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128(1):29–43. doi:S0092-8674(06)01648-5 [pii] 10.1016/j.cell.2006.12.021

    PubMed  CAS  Google Scholar 

  • Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A, Cooper JA (2004) Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr Biol 14(7):606–610. doi:10.1016/j.cub.2004.03.038

    PubMed  CAS  Google Scholar 

  • Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381. doi:10.1146/annurev.neuro.31.060407.125536

    PubMed  CAS  Google Scholar 

  • Batista-Brito R, Fishell G (2009) The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol 87:81–118. doi:10.1016/S0070-2153(09)01203-4

    PubMed  Google Scholar 

  • Bi W, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, Levy T, Shinder V, Peiffer DA, Gunderson KL, Nezarati MM, Shotts VA, Amato SS, Savage SK, Harris DJ, Day-Salvatore DL, Horner M, Lu XY, Sahoo T, Yanagawa Y, Beaudet al, Cheung SW, Martinez S, Lupski JR, Reiner O (2009) Increased LIS1 expression affects human and mouse brain development. Nat Genet 41(2):168–177. doi:10.1038/ng.302

    PubMed  CAS  Google Scholar 

  • Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13(1):18–26

    PubMed  CAS  Google Scholar 

  • Bradshaw NJ, Christie S, Soares DC, Carlyle BC, Porteous DJ, Millar JK (2009) NDE1 and NDEL1: multimerisation, alternate splicing and DISC1 interaction. Neurosci Lett 449(3):228–233. doi:10.1016/j.neulet.2008.10.095

    PubMed  CAS  Google Scholar 

  • Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9(2):110–122. doi:10.1038/nrn2252

    PubMed  CAS  Google Scholar 

  • Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini M, von Holst A, Shmueli O, Sapir T, McConnell SK, Wurst W, Martinez S, Reiner O (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc Natl Acad Sci U S A 98(11):6429–6434. doi:10.1073/pnas.101122598 101122598 [pii]

    PubMed  CAS  Google Scholar 

  • Cajal SRy (1911) Histology of the nervous system of man and vertebrates. Oxford University Press, Inc., Oxford, 1995 Translation

    Google Scholar 

  • Cardoso C, Leventer RJ, Ward HL, Toyo-Oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH (2003) Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 72(4):918–930. doi:10.1086/374320

    PubMed  CAS  Google Scholar 

  • Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326. doi:10.1146/annurev.ne.01.030178.001501

    PubMed  Google Scholar 

  • Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18(1):29–42

    PubMed  CAS  Google Scholar 

  • Chansard M, Hong JH, Park YU, Park SK, Nguyen MD (2011) Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton 68(10):540–554. doi:10.1002/cm.20532

    PubMed  CAS  Google Scholar 

  • Chardin P (2006) Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol 7(1):54–62. doi:10.1038/nrm1788

    PubMed  CAS  Google Scholar 

  • Chedotal A, Rijli FM (2009) Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 19(2):139–145. doi:10.1016/j.conb.2009.04.005

    PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723. doi:10.1038/374719a0

    PubMed  Google Scholar 

  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24(2):471–479

    PubMed  Google Scholar 

  • Derewenda U, Tarricone C, Choi WC, Cooper DR, Lukasik S, Perrina F, Tripathy A, Kim MH, Cafiso DS, Musacchio A, Derewenda ZS (2007) The structure of the coiled-coil domain of Ndel1 and the basis of its interaction with Lis1, the causal protein of Miller-Dieker lissencephaly. Structure 15(11):1467–1481. doi:10.1016/j.str.2007.09.015

    PubMed  CAS  Google Scholar 

  • Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AH, Eichmann A, Wellik D, Ducret S, Rijli FM (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339(6116):204–207. doi:10.1126/science.1229326

    PubMed  Google Scholar 

  • Dobyns WB, Truwit CL (1995) Lissencephaly and other malformations of cortical development: 1995 update. Neuropediatrics 26(3):132–147. doi:10.1055/s-2007-979744

    PubMed  CAS  Google Scholar 

  • Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, Kreidberg JA, Anton ES (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27(1):33–44

    PubMed  CAS  Google Scholar 

  • Efimov VP, Morris NR (2000) The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J Cell Biol 150(3):681–688

    PubMed  CAS  Google Scholar 

  • Falconer D (1951) Two new mutants, ‘trembler’ and ‘reeler’, with neurological actions in the house mouse (Mus musculus L.). J Genet 50:192–201

    Google Scholar 

  • Faulkner NE, Dujardin DL, Tai CY, Vaughan KT, O’Connell CB, Wang Y, Vallee RB (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2(11):784–791. doi:10.1038/35041020

    PubMed  CAS  Google Scholar 

  • Faux C, Rakic S, Andrews W, Britto JM (2012) Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 20(3):168–189. doi:10.1159/000334489

    PubMed  CAS  Google Scholar 

  • Feng Y, Walsh CA (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44(2):279–293. doi:S0896627304006117 [pii] 10.1016/j.neuron.2004.09.023

    PubMed  CAS  Google Scholar 

  • Feng Y, Olson EC, Stukenberg PT, Flanagan LA, Kirschner MW, Walsh CA (2000) LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28(3):665–679. doi:S0896-6273(00)00145-8 [pii]

    PubMed  CAS  Google Scholar 

  • Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21(1):23–35. doi:10.1016/j.conb.2010.10.002

    PubMed  CAS  Google Scholar 

  • Franco SJ, Muller U (2013) Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77(1):19–34. doi:10.1016/j.neuron.2012.12.022

    PubMed  CAS  Google Scholar 

  • Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U (2011) Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69(3):482–497. doi:10.1016/j.neuron.2011.01.003

    PubMed  CAS  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. doi:10.1038/nrm2720

    PubMed  CAS  Google Scholar 

  • Frotscher M (1997) Dual role of Cajal-Retzius cells and Reelin in cortical development. Cell Tissue Res 290(2):315–322

    PubMed  CAS  Google Scholar 

  • Gambello MJ, Darling DL, Yingling J, Tanaka T, Gleeson JG, Wynshaw-Boris A (2003) Multiple dose-dependent effects of Lis1 on cerebral cortical development. J Neurosci 23(5):1719–1729. doi:23/5/1719 [pii]

    PubMed  CAS  Google Scholar 

  • Ge W, He F, Kim KJ, Blanchi B, Coskun V, Nguyen L, Wu X, Zhao J, Heng JI, Martinowich K, Tao J, Wu H, Castro D, Sobeih MM, Corfas G, Gleeson JG, Greenberg ME, Guillemot F, Sun YE (2006) Coupling of cell migration with neurogenesis by proneural bHLH factors. Proc Natl Acad Sci U S A 103(5):1319–1324. doi:10.1073/pnas.0510419103

    PubMed  CAS  Google Scholar 

  • Gilmore EC, Ohshima T, Goffinet AM, Kulkarni AB, Herrup K (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18(16):6370–6377

    PubMed  CAS  Google Scholar 

  • Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23(8):352–359

    PubMed  CAS  Google Scholar 

  • Gloerich M, Bos JL (2011) Regulating Rap small G-proteins in time and space. Trends Cell Biol 21(10):615–623. doi:10.1016/j.tcb.2011.07.001

    PubMed  CAS  Google Scholar 

  • Govek EE, Hatten ME, Van Aelst L (2011) The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 71(6):528–553. doi:10.1002/dneu.20850

    PubMed  CAS  Google Scholar 

  • Guerrini R, Parrini E (2010) Neuronal migration disorders. Neurobiol Dis 38(2):154–166. doi:10.1016/j.nbd.2009.02.008

    PubMed  CAS  Google Scholar 

  • Gupta A, Sanada K, Miyamoto DT, Rovelstad S, Nadarajah B, Pearlman AL, Brunstrom J, Tsai LH (2003) Layering defect in p35 deficiency is linked to improper neuronal-glial interaction in radial migration. Nat Neurosci 6(12):1284–1291. doi:10.1038/nn1151

    PubMed  CAS  Google Scholar 

  • Hamburgh M (1963) Analysis of the postnatal developmental effects of “reeler,” a neurological mutation in mice. A study in developmental genetics. Dev Biol 8:165–185

    PubMed  CAS  Google Scholar 

  • Hanashima C, Li SC, Shen L, Lai E, Fishell G (2004) Foxg1 suppresses early cortical cell fate. Science 303(5654):56–59. doi:10.1126/science.1090674

    PubMed  CAS  Google Scholar 

  • Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, Guerrier S, Boutt E, Peters E, Barnes AP, Parras C, Schuurmans C, Guillemot F, Polleux F (2005) Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48(1):45–62. doi:10.1016/j.neuron.2005.08.032

    PubMed  CAS  Google Scholar 

  • Hashimoto-Torii K, Torii M, Sarkisian MR, Bartley CM, Shen J, Radtke F, Gridley T, Sestan N, Rakic P (2008) Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60(2):273–284. doi:10.1016/j.neuron.2008.09.026

    PubMed  CAS  Google Scholar 

  • Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, Guillemot F (2008) Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455(7209):114–118. doi:10.1038/nature07198

    PubMed  CAS  Google Scholar 

  • Heng JI, Chariot A, Nguyen L (2010) Molecular layers underlying cytoskeletal remodelling during cortical development. Trends Neurosci 33(1):38–47. doi:S0166-2236(09)00169-6 [pii] 10.1016/j.tins.2009.09.003

    PubMed  CAS  Google Scholar 

  • Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24(2):481–489

    PubMed  CAS  Google Scholar 

  • Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68(4):695–709. doi:S0896-6273(10)00769-5 [pii] 10.1016/j.neuron.2010.09.027

    PubMed  CAS  Google Scholar 

  • Hirotsune S, Pack SD, Chong SS, Robbins CM, Pavan WJ, Ledbetter DH, Wynshaw-Boris A (1997) Genomic organization of the murine Miller-Dieker/lissencephaly region: conservation of linkage with the human region. Genome Res 7(6):625–634

    PubMed  CAS  Google Scholar 

  • Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339. doi:10.1038/1221

    PubMed  CAS  Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26(1):93–96. doi:10.1038/79246

    PubMed  CAS  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389(6652):733–737. doi:10.1038/39607

    PubMed  CAS  Google Scholar 

  • Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine [corrected] phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13(6):643–648

    PubMed  CAS  Google Scholar 

  • Itoh Y, Moriyama Y, Hasegawa T, Endo TA, Toyoda T, Gotoh Y (2013) Scratch regulates neuronal migration onset via an epithelial-mesenchymal transition-like mechanism. Nat Neurosci 16(4):416–425. doi:10.1038/nn.3336

    PubMed  CAS  Google Scholar 

  • Jossin Y (2011) Polarization of migrating cortical neurons by Rap1 and N-cadherin: revisiting the model for the Reelin signaling pathway. Small GTPases 2(6):322–328. doi:10.4161/sgtp.18283

    PubMed  Google Scholar 

  • Jossin Y, Cooper JA (2011) Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat Neurosci 14(6):697–703. doi:10.1038/nn.2816

    PubMed  CAS  Google Scholar 

  • Jossin Y, Gui L, Goffinet AM (2007) Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons. J Neurosci 27(16):4243–4252. doi:10.1523/JNEUROSCI.0023-07.2007

    PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I (2009) Dynamic regulation of Notch signaling in neural progenitor cells. Curr Opin Cell Biol 21(6):733–740. doi:10.1016/j.ceb.2009.08.009

    PubMed  CAS  Google Scholar 

  • Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10(12):854–865. doi:10.1038/nrm2804

    PubMed  CAS  Google Scholar 

  • Kawauchi T, Hoshino M (2008) Molecular pathways regulating cytoskeletal organization and morphological changes in migrating neurons. Dev Neurosci 30(1–3):36–46. doi:10.1159/000109850

    PubMed  CAS  Google Scholar 

  • Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo K, Nakajima K, Nabeshima Y, Hoshino M (2010) Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 67(4):588–602. doi:10.1016/j.neuron.2010.07.007

    PubMed  CAS  Google Scholar 

  • Kitagawa M, Umezu M, Aoki J, Koizumi H, Arai H, Inoue K (2000) Direct association of LIS1, the lissencephaly gene product, with a mammalian homologue of a fungal nuclear distribution protein, rNUDE. FEBS Lett 479(1–2):57–62

    PubMed  CAS  Google Scholar 

  • Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21(17):6758–6771

    PubMed  CAS  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27(7):392–399. doi:10.1016/j.tins.2004.05.001

    PubMed  CAS  Google Scholar 

  • Kumamoto T, Toma K, Gunadi MKWL, Kasukawa T, Katzman S, Chen B, Hanashima C (2013) Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep 3(3):931–945. doi:10.1016/j.celrep.2013.02.023

    PubMed  CAS  Google Scholar 

  • Kwan KY, Lam MM, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N (2008) SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci U S A 105(41):16021–16026. doi:10.1073/pnas.0806791105

    PubMed  CAS  Google Scholar 

  • Lai T, Jabaudon D, Molyneaux BJ, Azim E, Arlotta P, Menezes JR, Macklis JD (2008) SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57(2):232–247. doi:10.1016/j.neuron.2007.12.023

    PubMed  CAS  Google Scholar 

  • LaMonica BE, Lui JH, Wang X, Kriegstein AR (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22(5):747–753. doi:10.1016/j.conb.2012.03.006

    PubMed  CAS  Google Scholar 

  • Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole AJ, Wong ET, LaMantia AS, Walsh CA (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69(5):893–905. doi:S0896-6273(11)00071-7 [pii] 10.1016/j.neuron.2011.01.023

    PubMed  CAS  Google Scholar 

  • Leone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK (2008) The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 18(1):28–35. doi:10.1016/j.conb.2008.05.006

    PubMed  CAS  Google Scholar 

  • Liu Z, Steward R, Luo L (2000) Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat Cell Biol 2(11):776–783. doi:10.1038/35041011

    PubMed  CAS  Google Scholar 

  • Lo Nigro C, Chong CS, Smith AC, Dobyns WB, Carrozzo R, Ledbetter DH (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 6(2):157–164

    PubMed  CAS  Google Scholar 

  • LoTurco JJ, Bai J (2006) The multipolar stage and disruptions in neuronal migration. Trends Neurosci 29(7):407–413. doi:S0166-2236(06)00094-4 [pii] 10.1016/j.tins.2006.05.006

    PubMed  CAS  Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146(1):18–36. doi:10.1016/j.cell.2011.06.030

    PubMed  CAS  Google Scholar 

  • Madigan JP, Bodemann BO, Brady DC, Dewar BJ, Keller PJ, Leitges M, Philips MR, Ridley AJ, Der CJ, Cox AD (2009) Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation. Biochem J 424(1):153–161. doi:10.1042/BJ20082377

    PubMed  CAS  Google Scholar 

  • Marin O (2013) Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci. doi:10.1111/ejn.12225

    PubMed  Google Scholar 

  • Marin O, Valiente M, Ge X, Tsai LH (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2:a001834

    PubMed  Google Scholar 

  • Martynoga B, Morrison H, Price DJ, Mason JO (2005) Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283(1):113–127. doi:10.1016/j.ydbio.2005.04.005

    PubMed  CAS  Google Scholar 

  • Martynoga B, Drechsel D, Guillemot F (2012) Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4(10):a008359. doi:10.1101/cshperspect.a008359

    PubMed  Google Scholar 

  • McConnell SK (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15(4):761–768. doi:0896-6273(95)90168-X [pii]

    PubMed  CAS  Google Scholar 

  • McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG (2002) Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295(5559):1528–1532. doi:10.1126/science.1067132

    PubMed  CAS  Google Scholar 

  • McKenney RJ, Vershinin M, Kunwar A, Vallee RB, Gross SP (2010) LIS1 and NudE induce a persistent dynein force-producing state. Cell 141(2):304–314. doi:10.1016/j.cell.2010.02.035

    PubMed  CAS  Google Scholar 

  • Mesngon MT, Tarricone C, Hebbar S, Guillotte AM, Schmitt EW, Lanier L, Musacchio A, King SJ, Smith DS (2006) Regulation of cytoplasmic dynein ATPase by Lis1. J Neurosci 26(7):2132–2139. doi:10.1523/JNEUROSCI.5095-05.2006

    PubMed  CAS  Google Scholar 

  • Meyer G (2007) Genetic control of neuronal migrations in human cortical development. Adv Anat Embryol Cell Biol 189:1 p preceding 1, 1–111

    Google Scholar 

  • Miyoshi G, Fishell G (2012) Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron 74(6):1045–1058. doi:10.1016/j.neuron.2012.04.025

    PubMed  CAS  Google Scholar 

  • Molnar Z, Metin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006) Comparative aspects of cerebral cortical development. Eur J Neurosci 23(4):921–934. doi:10.1111/j.1460-9568.2006.04611.x

    PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8(6):427–437. doi:10.1038/nrn2151

    PubMed  CAS  Google Scholar 

  • Moon HM, Wynshaw-Boris A (2013) Cytoskeleton in action: lissencephaly, a neuronal migration disorder. Wiley interdisciplinary reviews. Dev Biol 2(2):229–245. doi:10.1002/wdev.67

    CAS  Google Scholar 

  • Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, Muramatsu M, Zhang D, Saya H, Toyoshima YY, Kinoshita K, Wynshaw-Boris A, Hirotsune S (2007) NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol 27(1):352–367. doi:10.1128/MCB.00878-06

    PubMed  CAS  Google Scholar 

  • Mori D, Yamada M, Mimori-Kiyosue Y, Shirai Y, Suzuki A, Ohno S, Saya H, Wynshaw-Boris A, Hirotsune S (2009) An essential role of the aPKC-Aurora A-NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat Cell Biol 11(9):1057–1068. doi:10.1038/ncb1919

    PubMed  CAS  Google Scholar 

  • Morris NR (2000) Nuclear migration. From fungi to the mammalian brain. J Cell Biol 148(6):1097–1101

    PubMed  CAS  Google Scholar 

  • Muzio L, Mallamaci A (2005) Foxg1 confines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J Neurosci 25(17):4435–4441. doi:10.1523/JNEUROSCI.4804-04.2005

    PubMed  CAS  Google Scholar 

  • Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3(6):423–432. doi:10.1038/nrn845

    PubMed  CAS  Google Scholar 

  • Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4(2):143–150. doi:10.1038/83967

    PubMed  CAS  Google Scholar 

  • Nadarajah B, Alifragis P, Wong RO, Parnavelas JG (2003) Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb Cortex 13(6):607–611

    PubMed  CAS  Google Scholar 

  • Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH (2000) NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28(3):697–711. doi:S0896-6273(00)00147-1 [pii]

    PubMed  CAS  Google Scholar 

  • Noctor SC (2011) Time-lapse imaging of fluorescently labeled live cells in the embryonic mammalian forebrain. Cold Spring Harb Protoc 2011(11):1350–1361. doi:10.1101/pdb.prot066605

    PubMed  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144. doi:10.1038/nn1172

    PubMed  CAS  Google Scholar 

  • O’Leary DD, Chou SJ, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56(2):252–269. doi:10.1016/j.neuron.2007.10.010

    PubMed  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14(5):899–912

    PubMed  CAS  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna PHC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93(20):11173–11178

    PubMed  CAS  Google Scholar 

  • Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, Suzuki H, Saruta K, Iwasato T, Itohara S, Hashimoto M, Nakajima K, Ogawa M, Kulkarni AB, Mikoshiba K (2007) Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 134(12):2273–2282. doi:dev.02854 [pii] 10.1242/dev.02854

    PubMed  CAS  Google Scholar 

  • Ohtaka-Maruyama C, Hirai S, Miwa A, Takahashi A, Okado H (2012) The 5′-flanking region of the RP58 coding sequence shows prominent promoter activity in multipolar cells in the subventricular zone during corticogenesis. Neuroscience 201:67–84. doi:10.1016/j.neuroscience.2011.11.006

    PubMed  CAS  Google Scholar 

  • Ohtaka-Maruyama C, Hirai S, Miwa A, Heng JI, Shitara H, Ishii R, Taya C, Kawano H, Kasai M, Nakajima K, Okado H (2013) RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep 3(2):458–471. doi:10.1016/j.celrep.2013.01.012

    PubMed  CAS  Google Scholar 

  • Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M, Guillemot F (2011) Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69(6):1069–1084. doi:10.1016/j.neuron.2011.02.018

    PubMed  CAS  Google Scholar 

  • Pawlisz AS, Mutch C, Wynshaw-Boris A, Chenn A, Walsh CA, Feng Y (2008) Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination. Hum Mol Genet 17(16):2441–2455. doi:ddn144 [pii] 10.1093/hmg/ddn144

    PubMed  CAS  Google Scholar 

  • Perez-Martinez FJ, Luque-Rio A, Sakakibara A, Hattori M, Miyata T, Luque JM (2012) Reelin-dependent ApoER2 downregulation uncouples newborn neurons from progenitor cells. Biol Open 1(12):1258–1263. doi:10.1242/bio.20122816

    PubMed  Google Scholar 

  • Pilz DT, Quarrell OW (1996) Syndromes with lissencephaly. J Med Genet 33(4):319–323

    PubMed  CAS  Google Scholar 

  • Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM, Walsh CA, Barkovich AJ, Dobyns WB, Ledbetter DH, Ross ME (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7(13):2029–2037

    PubMed  CAS  Google Scholar 

  • Polleux F, Dehay C, Kennedy H (1997) The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. J Comp Neurol 385(1):95–116

    PubMed  CAS  Google Scholar 

  • Price DJ, Aslam S, Tasker L, Gillies K (1997) Fates of the earliest generated cells in the developing murine neocortex. J Comp Neurol 377(3):414–422

    PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145(1):61–83. doi:10.1002/cne.901450105

    PubMed  CAS  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183(123):425–427

    PubMed  CAS  Google Scholar 

  • Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55(2):204–219. doi:S0165-0173(07)00035-5 [pii] 10.1016/j.brainresrev.2007.02.010

    PubMed  Google Scholar 

  • Rash BG, Grove EA (2006) Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 16(1):25–34. doi:10.1016/j.conb.2006.01.004

    PubMed  CAS  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721. doi:10.1038/364717a0

    PubMed  CAS  Google Scholar 

  • Riento K, Totty N, Villalonga P, Garg R, Guasch R, Ridley AJ (2005) RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J 24(6):1170–1180. doi:10.1038/sj.emboj.7600612

    PubMed  CAS  Google Scholar 

  • Ross ME, Walsh CA (2001) Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci 24:1041–1070. doi:10.1146/annurev.neuro.24.1.1041

    PubMed  CAS  Google Scholar 

  • Sanada K, Gupta A, Tsai LH (2004) Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42(2):197–211

    PubMed  CAS  Google Scholar 

  • Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A, Hirotsune S (2000) A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28(3):681–696. doi:S0896-6273(00)00146-X [pii]

    PubMed  CAS  Google Scholar 

  • Sasaki S, Mori D, Toyo-oka K, Chen A, Garrett-Beal L, Muramatsu M, Miyagawa S, Hiraiwa N, Yoshiki A, Wynshaw-Boris A, Hirotsune S (2005) Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol Cell Biol 25(17):7812–7827. doi:25/17/7812 [pii] 10.1128/MCB.25.17.7812-7827.2005

    PubMed  CAS  Google Scholar 

  • Sasaki S, Tabata H, Tachikawa K, Nakajima K (2008) The cortical subventricular zone-specific molecule Svet1 is part of the nuclear RNA coded by the putative netrin receptor gene Unc5d and is expressed in multipolar migrating cells. Mol Cell Neurosci 38(4):474–483. doi:10.1016/j.mcn.2008.04.002

    PubMed  CAS  Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102(38):13652–13657. doi:0506008102 [pii] 10.1073/pnas.0506008102

    PubMed  CAS  Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9(5):1055–1071

    PubMed  CAS  Google Scholar 

  • Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K (2011) The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J Neurosci 31(25):9426–9439. doi:10.1523/JNEUROSCI.0650-11.2011

    PubMed  CAS  Google Scholar 

  • Sekine K, Kawauchi T, Kubo K, Honda T, Herz J, Hattori M, Kinashi T, Nakajima K (2012) Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin alpha5beta1. Neuron 76(2):353–369. doi:10.1016/j.neuron.2012.07.020

    PubMed  CAS  Google Scholar 

  • Senturk A, Pfennig S, Weiss A, Burk K, Acker-Palmer A (2011) Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature 472(7343):356–360. doi:10.1038/nature09874

    PubMed  Google Scholar 

  • Seo S, Lim JW, Yellajoshyula D, Chang LW, Kroll KL (2007) Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. EMBO J 26(24):5093–5108. doi:10.1038/sj.emboj.7601923

    PubMed  CAS  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389(6652):730–733. doi:10.1038/39601

    PubMed  CAS  Google Scholar 

  • Sheppard AM, Pearlman AL (1997) Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol 378(2):173–179

    PubMed  CAS  Google Scholar 

  • Shmueli A, Segal M, Sapir T, Tsutsumi R, Noritake J, Bar A, Sapoznik S, Fukata Y, Orr I, Fukata M, Reiner O (2010) Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity. EMBO J 29(1):107–119. doi:10.1038/emboj.2009.325

    PubMed  CAS  Google Scholar 

  • Shu T, Ayala R, Nguyen MD, Xie Z, Gleeson JG, Tsai LH (2004) Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44(2):263–277. doi:S0896627304006324 [pii] 10.1016/j.neuron.2004.09.030

    PubMed  CAS  Google Scholar 

  • Smith DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai LH (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat Cell Biol 2(11):767–775. doi:10.1038/35041000

    PubMed  CAS  Google Scholar 

  • Soares DC, Bradshaw NJ, Zou J, Kennaway CK, Hamilton RS, Chen ZA, Wear MA, Blackburn EA, Bramham J, Bottcher B, Millar JK, Barlow PN, Walkinshaw MD, Rappsilber J, Porteous DJ (2012) The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 287(39):32381–32393. doi:10.1074/jbc.M112.393439

    PubMed  CAS  Google Scholar 

  • Sugitani Y, Nakai S, Minowa O, Nishi M, Jishage K, Kawano H, Mori K, Ogawa M, Noda T (2002) Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 16(14):1760–1765. doi:10.1101/gad.978002

    PubMed  CAS  Google Scholar 

  • Super H, Soriano E, Uylings HB (1998) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Brain Res Rev 27(1):40–64

    PubMed  CAS  Google Scholar 

  • Sweeney KJ, Prokscha A, Eichele G (2001) NudE-L, a novel Lis1-interacting protein, belongs to a family of vertebrate coiled-coil proteins. Mech Dev 101(1–2):21–33

    PubMed  CAS  Google Scholar 

  • Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23(31):9996–10001

    PubMed  CAS  Google Scholar 

  • Tabata H, Nakajima K (2008) Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50(6):507–511. doi:10.1111/j.1440-169X.2008.01043.x

    PubMed  CAS  Google Scholar 

  • Tada M, Heisenberg CP (2012) Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139(21):3897–3904. doi:10.1242/dev.073007

    PubMed  CAS  Google Scholar 

  • Takahashi Y (2003) The 14-3-3 proteins: gene, gene expression, and function. Neurochem Res 28(8):1265–1273

    PubMed  CAS  Google Scholar 

  • Tarricone C, Perrina F, Monzani S, Massimiliano L, Kim MH, Derewenda ZS, Knapp S, Tsai LH, Musacchio A (2004) Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44(5):809–821. doi:10.1016/j.neuron.2004.11.019

    PubMed  CAS  Google Scholar 

  • Theveneau E, Mayor R (2013) Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci. doi:10.1007/s00018-012-1251-7

    PubMed  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4(6):496–505. doi:10.1038/nrn1113

    PubMed  CAS  Google Scholar 

  • Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A (2003) 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet 34(3):274–285. doi:10.1038/ng1169 ng1169 [pii]

    PubMed  CAS  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701

    PubMed  CAS  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46(3):383–388. doi:10.1016/j.neuron.2005.04.013

    PubMed  CAS  Google Scholar 

  • Tsai JW, Vallee RB (2011) Live microscopy of neural stem cell migration in brain slices. Method Mol Biol 750:131–142. doi:10.1007/978-1-61779-145-1_9

    CAS  Google Scholar 

  • Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423. doi:10.1038/371419a0

    PubMed  CAS  Google Scholar 

  • Tsai JW, Chen Y, Kriegstein AR, Vallee RB (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 170(6):935–945. doi:jcb.200505166 [pii] 10.1083/jcb.200505166

    PubMed  CAS  Google Scholar 

  • Uchida T, Baba A, Perez-Martinez FJ, Hibi T, Miyata T, Luque JM, Nakajima K, Hattori M (2009) Downregulation of functional Reelin receptors in projection neurons implies that primary Reelin action occurs at early/premigratory stages. J Neurosci 29(34):10653–10662. doi:10.1523/JNEUROSCI.0345-09.2009

    PubMed  CAS  Google Scholar 

  • Vallee RB, Seale GE, Tsai JW (2009) Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol 19(7):347–355. doi:S0962-8924(09)00099-3 [pii] 10.1016/j.tcb.2009.03.009

    PubMed  CAS  Google Scholar 

  • Vallee RB, McKenney RJ, Ori-McKenney KM (2012) Multiple modes of cytoplasmic dynein regulation. Nat Cell Biol 14(3):224–230. doi:10.1038/ncb2420

    PubMed  CAS  Google Scholar 

  • Voss AK, Britto JM, Dixon MP, Sheikh BN, Collin C, Tan SS, Thomas T (2008) C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment. Development 135(12):2139–2149. doi:10.1242/dev.016725

    PubMed  CAS  Google Scholar 

  • Ware ML, Fox JW, Gonzalez JL, Davis NM, Lambert de Rouvroit C, Russo CJ, Chua SC Jr, Goffinet AM, Walsh CA (1997) Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19(2):239–249

    PubMed  CAS  Google Scholar 

  • Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7(9):687–696. doi:10.1038/nrn1954

    PubMed  CAS  Google Scholar 

  • Wynshaw-Boris A (2007) Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin Genet 72(4):296–304. doi:CGE888 [pii] 10.1111/j.1399-0004.2007.00888.x

    PubMed  CAS  Google Scholar 

  • Xiang X, Osmani AH, Osmani SA, Xin M, Morris NR (1995) NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 6(3):297–310

    PubMed  CAS  Google Scholar 

  • Xiang X, Zuo W, Efimov VP, Morris NR (1999) Isolation of a new set of Aspergillus nidulans mutants defective in nuclear migration. Curr Genet 35(6):626–630

    PubMed  CAS  Google Scholar 

  • Yamada M, Toba S, Yoshida Y, Haratani K, Mori D, Yano Y, Mimori-Kiyosue Y, Nakamura T, Itoh K, Fushiki S, Setou M, Wynshaw-Boris A, Torisawa T, Toyoshima YY, Hirotsune S (2008) LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J 27(19):2471–2483. doi:10.1038/emboj.2008.182

    PubMed  CAS  Google Scholar 

  • Yang N, Inaki M, Cliffe A, Rorth P (2012) Microtubules and Lis-1/NudE/dynein regulate invasive cell-on-cell migration in Drosophila. PLoS One 7(7):e40632. doi:10.1371/journal.pone.0040632

    PubMed  CAS  Google Scholar 

  • Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008) Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132(3):474–486. doi:S0092-8674(08)00126-8 [pii] 10.1016/j.cell.2008.01.026

    PubMed  CAS  Google Scholar 

  • Youn YH, Pramparo T, Hirotsune S, Wynshaw-Boris A (2009) Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 29(49):15520–15530. doi:29/49/15520 [pii] 10.1523/JNEUROSCI.4630-09.2009

    PubMed  CAS  Google Scholar 

  • Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64(2):173–187. doi:10.1016/j.neuron.2009.08.018

    PubMed  CAS  Google Scholar 

  • Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492. doi:S0092-8674(05)00157-1 [pii] 10.1016/j.cell.2005.02.012

    PubMed  CAS  Google Scholar 

  • Zylkiewicz E, Kijanska M, Choi WC, Derewenda U, Derewenda ZS, Stukenberg PT (2011) The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J Cell Biol 192(3):433–445. doi:10.1083/jcb.201011142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

 I apologize to the all the authors whose relevant work could not be included in this chapter due to space constraints and thank Carl-Philipp Heisenberg, Michael Sixt and Mariapia Postiglione for helpful comments on the manuscript. This work was supported by IST Austria (Institute of Science and Technology Austria) institutional funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hippenmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hippenmeyer, S. (2014). Molecular Pathways Controlling the Sequential Steps of Cortical Projection Neuron Migration. In: Nguyen, L., Hippenmeyer, S. (eds) Cellular and Molecular Control of Neuronal Migration. Advances in Experimental Medicine and Biology, vol 800. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7687-6_1

Download citation

Publish with us

Policies and ethics