Skip to main content

Genomics of Origin, Domestication and Evolution of Phaseolus vulgaris

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

The role of genetic diversity is crucial for future improvements to meet societal demand for food security under a climate change scenario. From this perspective, it is thus crucial to understand the structure and evolution of crop species and their wild relatives. The common bean (Phaseolus vulgaris L.) is the world’s most important food legume for direct use, and the demand for this crop can be expected to increase based on the current trends in population growth and bean consumption. The wild P. vulgaris has a Mesoamerican origin, and since its expansion, it has become distributed from northern Mexico to north-western Argentina, which has led to the formation of two major gene pools in these geographical regions. Domestication took place after the formation of these gene pools, and their structure is still clearly evident in both the wild and the domesticated forms. This evolutionary scenario renders P. vulgaris almost unique among crops, and therefore particularly useful to investigate crop domestication, as this process can be studied in the same species as a replicated experiment (i.e., in Mesoamerica and in the Andes). The present review offers an overview of the current knowledge on the evolutionary history of P. vulgaris L. including speciation, domestication, diversification, and crop expansion outside its centers of domestication in Mesoamerica and in the Andes. Within this context, we also present a description of the available genomic tools and the germplasm collections that are at present available for genetic studies on the common bean, while showing their potential for improvements to the productivity and quality of this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Pre-breeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:44–59

    Google Scholar 

  • Akibode S, Maredia M (2011) Global and regional trends in production, trade and consumption of food legume crops. SPIA Report department of agricultural, food and resource economics, Michigan State University, East Lansing, MI

    Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, pp 642

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    CAS  PubMed  Google Scholar 

  • Angioi SA (2006) Development and use of molecular tools to study the genetic diversity in Phaseolus vulgaris L. and Phaseolus coccineus L. PhD thesis, University of Turin, Italy

    Google Scholar 

  • Angioi SA, Desiderio F, Rau D et al (2009a) Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. Plant Biol 11:598–612

    CAS  Google Scholar 

  • Angioi SA, Rau D, Rodriguez M et al (2009b) Nuclear and chloroplast microsatellite diversity in Phaseolus vulgaris L. from Sardinia (Italy). Mol Breed 23:413–429

    CAS  Google Scholar 

  • Angioi SA, Rau D, Attene G et al (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Gen 121:829–843

    CAS  Google Scholar 

  • Angioi SA, Rau D, Nanni L et al (2011) The genetic make–up of the European landraces of the common bean. Plant Genet Resour 9:197

    Google Scholar 

  • Anthony JL, Vonder Haar RA, Hall TC (1990) Nucleotide sequence of an alpha–phaseolin gene from Phaseolus vulgaris. Nucleic Acids Res 18:3396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arumuganthan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Google Scholar 

  • Asfaw A, Blair MW, Almekinders C (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Gen 120:1–12

    Google Scholar 

  • Beaver JS, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168:145–175

    CAS  Google Scholar 

  • Becerra-Velásquez VL, Gepts P (1994) RFLP diversity in common bean (Phaseolus vulgaris L.). Genome 37:256–263

    Google Scholar 

  • Beebe S, Skroch P, Tohme J et al (2000) Structure of genetic diversity among common bean landraces of middle-American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Google Scholar 

  • Beebe S, Rengifo J, Gaitan E et al (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–116

    CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Angiosperm DNA C-values database (release 7.0, Dec. 2010) http://www.kew.org/cvalues/

  • Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci U S A 109(14):E788–E796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A et al (2013) Molecular analysis of the parallel domestication of the common bean in Mesoamerica and the Andes. New Phytol 197:300–313

    CAS  PubMed  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006a) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Gen 112:1149–1163

    CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF et al (2006b) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Gen 113:100–109

    CAS  Google Scholar 

  • Blair MW, Diaz LM, Buendia HF et al (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    CAS  PubMed  Google Scholar 

  • Blair MW, González LF, Kimani M et al (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Gen 121:237–248

    CAS  Google Scholar 

  • Blair MW, Fernandez AC, Ishitani M et al (2011) Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biol 11:171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blair MW, Soler A, Cortés AJ (2012) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS One 7(11):e49488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blair MW, Cortés AJ, Penmetsa RV et al (2013) A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor Appl Genet 126:535–548

    PubMed  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M et al (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    CAS  Google Scholar 

  • Burle ML, Fonseca JR, Kami JA et al (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813

    PubMed Central  PubMed  Google Scholar 

  • Carvalho LMJ, Correa MM, Pereira EJ et al (2012) Iron and zinc retention in common beans (Phaseolus vulgaris L.) after home cooking. Food Nut Res 56:15618

    CAS  Google Scholar 

  • Chacón SMI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Google Scholar 

  • Coates AG, Collins LS, Aubry MP et al (2004) The geology of the Darien, Panama, and the late Miocene—Pliocene collision of the Panama arc with north–western South America. Geol Soc Amer Bull 116:1327–1344

    Google Scholar 

  • Cortés AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845

    PubMed  Google Scholar 

  • Cuppen E (2007) Genotyping by allele–specific amplification (KASPar). Cold Spring Harb Protocols, pp 172–173

    Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome–wide genetic marker discovery and genotyping using next–generation sequencing. Nat Rev Genet 12:499–510

    CAS  PubMed  Google Scholar 

  • Debouck DG, Toro O, Paredes OM et al (1993) Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South America. Econ Bot 47:408–423

    Google Scholar 

  • Delgado-Salinas A, Turley T, Richman A et al (1999) Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot 24:438–460

    Google Scholar 

  • Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791

    Google Scholar 

  • Desiderio F, Bitocchi E, Bellucci E et al (2013) Chloroplast microsatellite diversity in Phaseolus vulgaris. Front Plant Sci 3:312

    PubMed Central  PubMed  Google Scholar 

  • Dìaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154

    PubMed  Google Scholar 

  • Ebert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour 9:673–690

    CAS  PubMed  Google Scholar 

  • Escribano MR, Santalla M, Casquero PA et al (1998) Patterns of genetic diversity in landraces of common bean (Phaseolus vulgaris L.) from Galicia. Plant Breed 117:49–56

    Google Scholar 

  • Freyre R, Ríos R, Guzmán L et al (1996) Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot 50:195–215

    Google Scholar 

  • Freyre R, Skroch P, Geffroy V et al (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    CAS  Google Scholar 

  • Freytag GF, Debouck DG (1996) Phaseolus costaricensis, a new wild bean species (Phaseolinae, Leguminosae) from Costa Rica and Panama, central America. Novon 6:157–163

    Google Scholar 

  • Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae–Papilionoideae) in North America, Mexico and central America. Botanical Research Institute of Texas, Ft. Worth

    Google Scholar 

  • Galeano CH, Fernandez AC, Gomez M et al (2009) Single strand conformation polymorphism based SNP and indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics 10:629

    PubMed Central  PubMed  Google Scholar 

  • Galeano C, Cortés A, Fernández A et al (2012) Gene–based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 13(1):48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gepts P, Bliss FA (1985) F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76:447–450

    Google Scholar 

  • Gepts P, Osborn TC, Rashka K et al (1986) Phaseolin–protein variability in wild forms and landraces of the common bean Phaseolus vulgaris evidence for multiple centers of domestication. Econ Bot 40:451–468

    CAS  Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II Europe and Africa. Econ Bot 42:86–104

    Google Scholar 

  • Gepts P, Kmiecik K, Pereira P et al (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas. Econ Bot 42:73–85

    Google Scholar 

  • Gepts P, Debouck DG (1991) Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In: Voysest O, Van Schoonhoven A (eds.) Common beans: research for crop improvement. CAB, Oxon, UK, pp 7–53

    Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean, past event and recent trends. J Am Soc Hortic Sci 33:1124–1130

    Google Scholar 

  • Gepts P, Papa R, Coulibaly S et al (1999) Wild legume diversity and domestication – insights from molecular methods. In Vaughan D (ed), Wild legumes, Proc. 7th MAFF International Workshop on Genetic Resources. National Institute of Agrobiological Resources, Tsukuba, Japan, pp 19–31

    Google Scholar 

  • Gepts P, Papa R (2002). Evolution during domestication. In: Encyclopedia of Life Sciences 1–7 LONDON: Nature Publishing Group. Macmillan Publishers Ltd (UK)

    Google Scholar 

  • Gepts P, Aragão F, de Barros E et al (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the Tropics. In: Moore PH, Ming R (eds) Genomics of Tropical Crop Plants. Springer, Berlin, pp 113–143

    Google Scholar 

  • Gioia T, Logozzo G, Attene G et al (2013) Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica x Andes) hybridization in the European common bean (Phaseolus vulgaris L.) germplasm Plos ONE (in press)

    Google Scholar 

  • Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290

    PubMed  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array–based high–throughput DNA markers for crop improvement. Heredity 101:5–18

    CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Fickus EW et al (2010) High–throughput SNP discovery and assay development in common bean. BMC Genomics 11:475

    PubMed Central  PubMed  Google Scholar 

  • Johnson WC, Gepts P (1999) Segregation for performance in recombinant inbred populations resulting from inter–gene pool crosses of common bean (Phaseolus vulgaris L.). Euphytica 106:5–56

    Google Scholar 

  • Johnson WC, Gepts P (2002) The role of epistasis in controlling seed yield and other agronomic traits in an Andean–Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica 125:69–79

    CAS  Google Scholar 

  • Kalavacharla V, Liu Z, Meyers BC et al (2011) Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing. BMC Plant Biol 11:135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kami J, Becerra–Velásquez V, Debouck DG et al (1995) Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci U S A 92:1101–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly JD, Gepts P, Miklas PN et al (2003) Tagging and mapping of genes and QTL and molecular–marker assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Google Scholar 

  • Koenig R, Gepts P (1989) Allozyme diversity in wild Phaseolus vulgaris further evidence for two major centers of diversity. Theor Appl Genet 78:809–817

    CAS  PubMed  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1145

    Google Scholar 

  • Kwak M, Kami JA, Gepts P (2006) Identification of the determinacy gene (Fin) and its evolution during domestication in common bean (Phaseolus vulgaris L.). In: Plant & Animal Genome XIV, poster 447. Abstract available at: http://www.intl-pag.org/14/abstracts/PAG14_P447.html

  • Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99:283–291

    CAS  PubMed  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    CAS  PubMed  Google Scholar 

  • Kwak M, Kami JA, Gepts P (2009) The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma–Santiago basin of Mexico. Crop Sci 49:554–563

    Google Scholar 

  • Lavin M, Herendeen PS, Wojjciechowski MF (2005) Evolutionary rate analysis of leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594

    PubMed  Google Scholar 

  • Limongelli G, Laghetti G, Perrino P et al (1996) Variation of seed storage protein in landraces of common bean (Phaseolus vulgaris L.) from Basilicata, southern Italy. Plant Breed 119:513–516

    Google Scholar 

  • Lioi L (1989) Geographical variation of phaseolin patterns in an old world collection of Phaseolus vulgaris. Seed Sci Technol 17:317–324

    Google Scholar 

  • Logozzo G, Donnoli R, Macaluso L et al (2007) Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet Resour Crop Ev 54:1763–1779

    Google Scholar 

  • Mamidi S, Rossi M, Annam D et al (2011) Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data. Funct Plant Biol 38:953–967

    CAS  Google Scholar 

  • Mardis ER (2008) The impact of next–generation sequencing technology on genetics. Trends Genet 24:133–141

    CAS  PubMed  Google Scholar 

  • Marshall HD, Newton C, Ritland K (2002) Chloroplast phylogeography and evolution of highly polymorphic microsatellites in lodgepolepine (Pinus contorta). Theor Appl Genet 104:367–378

    CAS  Google Scholar 

  • Martin GB, Adams MW (1987a) Landraces of Phaseolus vulgaris (Fabaceae) in northern Malawi I. Regional variation. Econ Bot 41:190–203

    Google Scholar 

  • Martin GB, Adams MW (1987b) Landraces of Phaseolus vulgaris (Fabaceae) in northern Malawi II. Generation and maintenance of variability. Econ Bot 41:204–215

    Google Scholar 

  • McClean PE, Lee RK, Miklas PN (2004) Sequence diversity analysis of dihydroflavonol 4–reductase intron 1 in common bean. Genome 47:266–280

    CAS  PubMed  Google Scholar 

  • McClean PE, Lee RK (2007) Genetic architecture of chalcone isomerase non–coding regions in common bean (Phaseolus vulgaris L.). Genome 50:203–214

    CAS  PubMed  Google Scholar 

  • McClean PE, Lavin M, Gepts P et al (2008) Phaseolus vulgaris: a diploid model for soybean. In: Stacey G (eds) Soybean Genomics. Springer, Berlin, pp 55–78

    Google Scholar 

  • McClean PE, Mamidi S, McConnell M et al (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics 11:184. http://www.biomedcentral.com/1471-2164/11/184

  • McClean PE, Jackson S, Schmutz J et al (2013) Progress toward a draft sequence of the common bean genome. Grains and Legumes (in press)

    Google Scholar 

  • McConnell M, Mamidi S, Lee R et al (2010) Syntenic relationships among legumes revealed using a gene–based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116

    PubMed  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    PubMed Central  PubMed  Google Scholar 

  • Melotto M, Monteiro–Vitorello CB, Bruschi AG et al (2005) Comparative bioinformatic analysis of genes expressed in common bean (Phaseolus vulgaris L.) seedlings. Genome 48:562–570

    CAS  PubMed  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE et al (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    CAS  Google Scholar 

  • Nanni L, Bitocchi E, Bellucci E et al (2011) Nucleotide diversity of a genomic sequence similar to SHATTERPROOF (PvSHP1) in domesticated and wild common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:1341–1357

    CAS  PubMed  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    CAS  PubMed  Google Scholar 

  • Papa R, Acosta J, Delgado–Salinas A et al (2005) A genome–wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    CAS  PubMed  Google Scholar 

  • Papa R, Nanni L, Sicard D et al (2006) The evolution of genetic diversity in Phaseolus vulgaris L. In: Motley TJ, Zerega N, Cross H (eds) New Approaches to the Origins, Evolution and Conservation of Crops. Darwin’s Harvest. Columbia University Press, New York

    Google Scholar 

  • Papa R, Bellucci E, Rossi M et al (2007) Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot 100:1039–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piergiovanni AR, Cerbino D, Brandi M (2000a) The common bean populations from Basilicata (southern Italy). An evaluation of their variation. Genet Resour Crop Ev 47:489–495

    Google Scholar 

  • Piergiovanni AR, Taranto G, Pignone D (2000b) Diversity among common bean populations from the Abruzzo region (central Italy): a preliminary inquiry. Genet Resour Crop Ev 47:467–470

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Provan J, Soranzo N, Wilson NJ et al (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    PubMed  Google Scholar 

  • Ramirez M, Graham MA, Blanco–Lopez L et al (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Repinski S, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539–1547

    CAS  PubMed  Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E et al (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    PubMed Central  Google Scholar 

  • Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwester Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944

    CAS  PubMed  Google Scholar 

  • Santalla M, Menéndez–Sevillano MC, Monteagudo AB et al (2004) Genetic diversity of Argentinean common bean and its evolution during domestication. Euphytica 135:75–87

    CAS  Google Scholar 

  • Santalla M, De Ron AM, De La Fuente M (2010) Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor Appl Genet 120:1635–1651

    CAS  PubMed  Google Scholar 

  • Schlueter JA, Dixon P, Granger C et al (2004) Mining the EST databases to determine evolutionary events in the legumes and grasses. Genome 47:868–876

    CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Sicard D, Nanni L, Porfiri O et al (2005) Genetic diversity of Phaseolus vulgaris L and P. coccineus L. landraces in central Italy. Plant Breed 124:464–472

    CAS  Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars. Crop sci 41:1659–1675

    Google Scholar 

  • Singh SP, Nodari R, Gepts P (1991a) Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci 31:19–23

    CAS  Google Scholar 

  • Singh SP, Gutiérrez JA, Molina A et al (1991b) Genetic diversity in cultivated common bean. II. Marker–based analysis of morphological and agronomic traits. Crop Sci 31:23–29

    CAS  Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991c) Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Stefanović S, Pfeil BE, Palmer JD et al (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    CAS  PubMed  Google Scholar 

  • Thibivilliers S, Joshi T, Campbell KB et al (2009) Generation of Phaseolus vulgaris ESTs and investigation of their regulation upon uromyces appendiculatus infection. BMC Plant Biol 9:46

    PubMed Central  PubMed  Google Scholar 

  • Thuillet AC, Bataillon T, Poirier S et al (2005) Estimation of long–term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169:1589–1599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian J, Venkatachalam P, Liao H et al (2007) Molecular cloning and characterization of phosphorous starvation responsive genes in common bean (Phaseolus vulgaris L.). Planta 227:151–165

    CAS  PubMed  Google Scholar 

  • Tohme J, Gonzalez DO, Beebe S et al (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    CAS  Google Scholar 

  • Toro O, Tohme J, Debouck DG (1990) Wild bean (Phaseolus vulgaris L.): Description and distribution. Centro Internacional de Agricultura Tropical, Cali, Colombia

    Google Scholar 

  • Tuberosa R, Graner A, Varshney RK (2011) Genomics of plant genetic resources: an introduction. Plant Genet Resour 9:151–154

    Google Scholar 

  • Vähä JP, Primmer CR (2006) Efficiency of model–based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    PubMed  Google Scholar 

  • Heerwaarden J van, Doebley J, Briggs WH et al (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci U S A 108:1088–1092

    PubMed Central  PubMed  Google Scholar 

  • Vera J, Wheat C, Fescemyer H et al (2008) Rapid transcriptome characterization for a non model organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    CAS  PubMed  Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA et al (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT Pan–African Bean Research Alliance, vol 133

    Google Scholar 

  • Yan JB, Yang XH, Shah T et al (2010) High–throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    CAS  Google Scholar 

  • Young ND, Cannon SB, Sato S et al (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Phys 137:1174–1181

    CAS  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeats markers. Theor Appl Genet 117:629–640

    CAS  PubMed  Google Scholar 

  • Zheng ZJ (1997) Food legumes in China. China Agriculture Press, Beijing, pp 222–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Papa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bellucci, E. et al. (2014). Genomics of Origin, Domestication and Evolution of Phaseolus vulgaris . In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_20

Download citation

Publish with us

Policies and ethics