Skip to main content

Advances in Sequencing the Barley Genome

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Barley genome sequencing is lagging behind the status achieved for many other crop genomes although barley is ranking worldwide as fifth most important crop species. Whole genome sequencing of barley with classical Sanger sequencing technology was long meant to be too costly due to the very large genome size of more than 5 Gigabases. By the introduction of Next Generation Sequencing technology this situation has changed and fascinating new possibilities opened up for in depth barley genome analysis and whole genome sequencing. Genome composition has been revealed at unprecedented resolution. A linear gene order map comprising two thirds of all barley genes could be developed and the approach is currently adopted for other related and important cereal genomes like wheat and rye. Important technical limitations have been solved making even whole genome sequencing in barley a feasible endeavor. Provided these new possibilities, it is becoming obvious that soon sequencing per se is no longer the limiting factor but sequence assembly remains the challenge. This review will provide a brief summary of the recent developments in barley genome sequencing achieved since the introduction of Next Generation Sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed Central  PubMed  Google Scholar 

  • Berkman P, Skarshewski A, Manoli S et al (2011a) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet. in press

    Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT et al (2011b) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775

    Article  CAS  Google Scholar 

  • Chain PSG, Grafham DV, Fulton RS et al (2009) Genome project standards in a new era of sequencing. Science 326:236–237

    Article  CAS  PubMed  Google Scholar 

  • Chevreux B, Wetter T, Suhei S (1999) Genome sequence assembly using signals and additional sequence information. Computer science and biology: proceedings of the German conference on bioinformatics (GCB), 99:45–56

    Google Scholar 

  • Chutimanitsakun Y, Nipper R, Cuesta-Marcos A et al (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doležel J, Kubaláková M, Paux E et al (2007) Chromosome-based genomics in the cereals. Chromosome Res 15:51–66

    Article  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eversole K, Graner A, Stein N (2009) Wheat and barley genome sequencing. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer pp 713–742

    Google Scholar 

  • Feuillet C, Leach JE, Rogers J et al (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  PubMed  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    Article  CAS  PubMed  Google Scholar 

  • Gnerre S, Maccallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Hernandez P, Martis M, Dorado G et al (2011) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    Google Scholar 

  • Holt RA, Jones SJM (2008) The new paradigm of flow cell sequencing. Genome Res 18:839–846

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer pp 337–357

    Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed Central  PubMed  Google Scholar 

  • Kurtz S, Narechania A, Stein J, Ware D (2008) A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics 9:517

    Article  PubMed Central  PubMed  Google Scholar 

  • Li R, Fan W, Tian G et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manninen I, Schulman A (1993) BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Taudien S, Martis M et al (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley P et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278

    Article  CAS  PubMed  Google Scholar 

  • Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Phillippy A, Schatz M, Pop M (2008) Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 9:R55

    Article  PubMed Central  PubMed  Google Scholar 

  • Roach JC, Boysen C, Wang K, Hood L (1995) Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics 26:345–353

    Article  CAS  PubMed  Google Scholar 

  • Rowe HC, Renaut S, Guggisberg A (2011) RAD in the realm of next-generation sequencing technologies. Mol Ecol 20:3499–3502

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato K, Motoi Y, Yamaji N, Yoshida H (2011) 454 sequencing of pooled BAC clones on chromosome 3H of barley. BMC Genomics 12:246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulte D, Close TJ, Graner A et al (2009) The international barley sequencing consortium–at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Service RF (2006) Gene sequencing: the race for the $1000 genome. Science 311:1544–1546

    Article  CAS  PubMed  Google Scholar 

  • Simpson JT, Durbin R (2011) Efficient de novo assembly of large genomes using compressed data structures. Genome Res 22:549–556

    Article  PubMed  Google Scholar 

  • Simpson J, Wong K, Jackman S et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorokin A, Marthe F, Houben A et al (1994) Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome 37:550–555

    Article  CAS  PubMed  Google Scholar 

  • Staden R (1980) A new computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Res 8:3673–3694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res 15:21–31

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Graner A (2004) Map-based gene isolation in cereal genomes. In: Gupta P, Varshney R (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, pp 331–360

    Google Scholar 

  • Steuernagel B, Taudien S, Gundlach H et al (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10:547

    Article  PubMed Central  PubMed  Google Scholar 

  • Taudien S, Steuernagel B, Ariyadasa R et al (2011) Sequencing of BAC pools by different next generation sequencing platforms and strategies. BMC Res Notes 4:411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (IBSC) (2012) A physical, genetical and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jonsson K et al (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitulo N, Albiero A, Forcato C et al (2011) First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 6:e26421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Schlagenhauf E, Graner A et al (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7:275

    Article  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Narechania A, Sabot F et al (2008) Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9:518

    Article  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Taudien S, Houben A et al (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H et al (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–1718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W et al (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stein, N., Steuernagel, B. (2014). Advances in Sequencing the Barley Genome. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_16

Download citation

Publish with us

Policies and ethics