Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 75))

Abstract

Carbonic anhydrases (CAs) catalyze a fundamental reaction: the reversible hydration and dehydration of carbon dioxide (CO2) and bicarbonate (\( \mathrm{HC}{{\mathrm{O}}_3}^{-} \)), respectively. Current methods for CO2 capture and sequestration are harsh, expensive, and require prohibitively large energy inputs, effectively negating the purpose of removing CO2 from the atmosphere. Due to CA’s activity on CO2 there is increasing interest in using CAs for industrial applications such as carbon sequestration and biofuel production. A lot of work in the last decade has focused on immobilizing CA onto various supports for incorporation into CO2 scrubbing applications or devices. Although the proof of principle has been validated, current CAs being tested do not withstand the harsh industrial conditions. The advent of large-scale genome sequencing projects has resulted in several emerging efforts seeking out novel CAs from a variety of microorganisms, including bacteria, micro-, and macro-algae. CAs are also being investigated for their use in medical applications, such drug delivery systems and artificial lungs. This review also looks at possible downstream uses of captured and sequestered CO2, from using it to enhance oil recovery to incorporating it into useful and financially viable products.

Susan C. Frost and Robert McKenna (eds.). Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic-anhydrase – implications of a rate-limiting protolysis of water. Acc Chem Res 21:30–36

    Article  CAS  Google Scholar 

  2. Pocker Y, Bjorkquist DW (1977) Comparative studies of bovine carbonic anhydrase in H2O and D2O. Stopped-flow studies of the kinetics of interconversion of CO2 and HCO3. Biochemistry 16:5698–5707

    Article  PubMed  CAS  Google Scholar 

  3. Vullo D, Luca VD, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C (2012) The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides. Bioorg Med Chem 15:1534–1538

    Google Scholar 

  4. Bond GM, Stringer J, Brandvold DK, Simsek FA, Medina MG, Egeland G (2001) Development of integrated system for biomimetic CO(2) sequestration using the enzyme carbonic anhydrase. Energy Fuel 15:309–316

    Article  CAS  Google Scholar 

  5. Lee SW, Park SB, Jeong SK, Lim KS, Lee SH, Trachtenberg MC (2010) On carbon dioxide storage based on biomineralization strategies. Micron 41:273–282

    Article  PubMed  CAS  Google Scholar 

  6. Savile CK, Lalonde JJ (2011) Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 22:818–823

    Article  PubMed  CAS  Google Scholar 

  7. Fisher SZ, Aggarwal M, Kovalevsky AY, Silverman DN, McKenna R (2012) Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding. J Am Chem Soc 134:14726–14729

    Article  PubMed  CAS  Google Scholar 

  8. Intergovernmental Panel on Climate Change (IPCC) (2007) http://www.ipcc.ch/publications_and_data/ar4/syr/en/main.html

  9. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton R, Marland G (2007) Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  PubMed  CAS  Google Scholar 

  10. Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon-dioxide at Mauna Loa observatory.2. Analysis of the Noaa Gmcc Data, 1974–1985. J Geophys Res Atmos 94:8549–8565

    Article  CAS  Google Scholar 

  11. Tans PP (2013) http://www.esrl.noaa.gov/gmd/ccgg/trends/

  12. Intergovernmental Panel on Climate Change (IPCC) (2001) http://www.grida.no/climate/ipcc_tar/

  13. Post E, Forchhammer MC, Bret-Harte M, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Hoye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire A, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJ, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the arctic associated with recent climate change. Science 325:1355–1358

    Article  PubMed  CAS  Google Scholar 

  14. Clarke G, Leverington D, Teller J, Dyke A (2003) Superlakes, megafloods, and abrupt climate change. Science 301:922–923

    Article  PubMed  CAS  Google Scholar 

  15. Benson SM, Surles T (2006) Carbon dioxide capture and storage: an overview with emphasis on capture and storage in deep geological formations. Proc IEEE 94:1795–1805

    Article  CAS  Google Scholar 

  16. Pierre AC (2012) Enzymatic carbon dioxide capture. ISRN Chemical Engineering 2012:753687, p. 22

    Google Scholar 

  17. Bao L, Trachtenberg MC (2006) Facilitated transport of CO2 across a liquid membrane: comparing enzyme, amine, and alkaline. J Membr Sci 280:330–334

    Article  CAS  Google Scholar 

  18. Dreybrodt W, Lauckner J, Liu ZH, Svensson U, Buhmann D (1996) The kinetics of the reaction CO2 + H2O → H+ + HCO3 as one of the rate limiting steps for the dissolution of calcite in the system H2O–CO2–CaCO3. Geochim Cosmochim Acta 60:3375–3381

    Article  CAS  Google Scholar 

  19. Dodds WS, Stutzman LF, Sollami BJ (1956) Carbon dioxide solubility in water. Ind Eng Chem 1:92–95

    CAS  Google Scholar 

  20. Boron WF (2010) Evaluating the role of carbonic anhydrases in the transport of HCO3–related species. Biochim Biophys Acta 1804:410–421

    Article  PubMed  CAS  Google Scholar 

  21. The PyMOL molecular graphics system, version 1.5.0.4 Schrödinger, LLC. 2013

    Google Scholar 

  22. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  23. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15:330–340

    Article  PubMed  CAS  Google Scholar 

  24. Fisher Z, Kovalevsky AY, Mustyakimov M, Silverman DN, McKenna R, Langan P (2011) Neutron structure of human carbonic anhydrase II: a hydrogen-bonded water network “switch” is observed between pH 7.8 and 10.0. Biochemistry 50:9421–9423

    Article  PubMed  CAS  Google Scholar 

  25. da Costa OJ, Sala L, Cerveira GP, Kalil SJ (2012) Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymic capture of carbon dioxide. Chemosphere 88:255–259

    Article  Google Scholar 

  26. Service RF (2011) Algae’s second try. Science 333:1238–1239

    Article  PubMed  CAS  Google Scholar 

  27. Bloch MR, Sasson J, Ginzburg ME, Goldman Z, Ginzburg BZ, Garti N, Porath A (1982) Oil products from algae. US patent 4,341,038, 1982

    Google Scholar 

  28. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  29. Cannon GC, Heinhorst S, Kerfeld CA (2010) Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim et Biophys Acta-Proteins Proteomics 1804:382–392

    Article  CAS  Google Scholar 

  30. Ellis R (2010) Biochemistry tackling unintelligent design. Nature 463:164–165

    Article  PubMed  CAS  Google Scholar 

  31. Pires J, Alvim-Ferraz M, Martins F, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev 16:3043–3053

    Article  CAS  Google Scholar 

  32. Gonzalez-Fernandez C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661

    Article  PubMed  CAS  Google Scholar 

  33. Shekh AY, Krishnamurthi K, Mudliar SN, Yadav RR, Fulke AB, Devi SS, Chakrabarti T (2012) Recent advancements in carbonic anhydrase-driven processes for CO2 sequestration: minireview. Crit Rev Environ Sci Technol 42:1419–1440

    Article  CAS  Google Scholar 

  34. Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp and Spirulina platensis in a mini-raceway pond. Bioresour Technol 101:2616–2622

    Article  PubMed  CAS  Google Scholar 

  35. Fulke AB, Mudliar S, Yadav R, Shekh A, Srinivasan N, Ramanan R, Krishnamurthi K, Devi SS, Chakrabarti T (2010) Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresour Technol 101:8473–8476

    Article  PubMed  CAS  Google Scholar 

  36. Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541

    Article  PubMed  CAS  Google Scholar 

  37. Rost B, Richter KU, Riebesell U, Hansen PJ (2006) Inorganic carbon acquisition in red tide dinoflagellates. Plant Cell Environ 29:810–822

    Article  PubMed  CAS  Google Scholar 

  38. Ozdemir E (2009) Biomimetic CO2 sequestration: 1. Immobilization of carbonic anhydrase within polyurethane foam. Energy Fuels 23:5725–5730

    Article  CAS  Google Scholar 

  39. Liu Z, Bartlow P, Dilmore RM, Soong Y, Pan Z, Koepsel R, Ataai M (2009) Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum. Biotechnol Prog 25:68–74

    Article  PubMed  Google Scholar 

  40. Cheng LH, Zhang L, Chen HL, Gao CJ (2008) Hollow fiber contained hydrogel-CA membrane contactor for carbon dioxide removal from the enclosed spaces. J Membr Sci 324:33–43

    Article  CAS  Google Scholar 

  41. Hosseinkhani S, Szittner R, Nemat-Gorgani M, Meighen EA (2003) Adsorptive immobilization of bacterial luciferases on alkyl-substituted Sepharose 4B. Enzyme Microb Technol 32:186–193

    Article  CAS  Google Scholar 

  42. Oviya M, Giri SS, Sukumaran V, Natarajan P (2012) Immobilization of carbonic anhydrase enzyme purified from Bacillus subtilis Vsg-4 and its application As CO2 sequesterer. Prep Biochem Biotechnol 42:462–475

    Article  PubMed  CAS  Google Scholar 

  43. Yadav R, Satyanarayanan T, Kotwal S, Rayalu S (2011) Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles. Curr Sci 100:520–524

    CAS  Google Scholar 

  44. Machida-Sano I, Ogawa S, Ueda H, Kimura Y, Satoh N, Namiki H (2012) Effects of composition of iron-cross-linked alginate hydrogels for cultivation of human dermal fibroblasts. Int J Biomater 2012:820513

    PubMed  Google Scholar 

  45. Zhai P, Chen XB, Schreyer DJ (2013) Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Biofabrication 5:015009

    Article  PubMed  CAS  Google Scholar 

  46. Simsek-Ege FA, Bond GM, Stringer J (2002) Matrix molecular weight cut-off for encapsulation of carbonic anhydrase in polyelectrolyte beads. J Biomater Sci Polym Ed 13:1175–1187

    Article  PubMed  CAS  Google Scholar 

  47. Prabhu C, Wanjari S, Puri A, Bhattacharya A, Pujari R, Yadav R, Das S, Labhsetwar N, Sharma A, Satyanarayanan T, Rayalu S (2011) Region-specific bacterial carbonic anhydrase for biomimetic sequestration of carbon dioxide. Energy Fuel 25:1327–1332

    Article  CAS  Google Scholar 

  48. Wanjari S, Prabhu C, Yadav R, Satyanarayana T, Labhsetwar N, Rayalu S (2011) Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction. Process Biochem 46:1010–1018

    Article  CAS  Google Scholar 

  49. Sharma A, Bhattacharya A, Shrivastava A (2011) Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb Technol 48:416–426

    Article  PubMed  CAS  Google Scholar 

  50. Prabhu C, Wanjari S, Gawande S, Das S, Labhsetwar N, Kotwal S, Puri AK, Satyanarayana T, Rayalu S (2009) Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials. J Mol Catal B: Enzym 60:13–21

    Article  CAS  Google Scholar 

  51. Fan LH, Liu N, Yu MR, Yang ST, Chen HL (2011) Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO2 sequestration. Biotechnol Bioeng 108:2853–2864

    Article  PubMed  CAS  Google Scholar 

  52. Vinoba M, Bhagiyalakshmi M, Jeong SK, Nam SC, Yoon Y (2012) Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO2 sequestration. Chem A Eur J 18:12028–12034

    Article  CAS  Google Scholar 

  53. Vinoba M, Lim KS, Lee SH, Jeong SK, Alagar M (2011) Immobilization of human carbonic anhydrase on gold nanoparticles assembled onto amine/thiol-functionalized mesoporous SBA-15 for biomimetic sequestration of CO2. Langmuir 27:6227–6234

    Article  PubMed  CAS  Google Scholar 

  54. Wanjari S, Prabhu C, Satyanarayana T, Vinu A, Rayalu S (2012) Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction. Micropor Mesopor Mater 160:151–158

    Article  CAS  Google Scholar 

  55. Vinoba M, Bhagiyalakshmi M, Jeong SK, Yoon YI, Nam SC (2012) Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2. Colloids Surf B Biointerfaces 90:91–96

    Article  PubMed  CAS  Google Scholar 

  56. Wood LL, Hartdegen FJ, Hahn PA (1982) Enzymes bound to polyurethane, US Patent 4,342,834, 1982

    Google Scholar 

  57. Trachtenberg MC, Tu CK, Landers RA, Willson RC, McGregor ML, Laipis PJ, Kennedy JF, Paterson M, Silverman DN, Thomas D, Smith RL, Rudolph FB (1999) Carbon dioxide transport by proteic and facilitated transport membranes. Life Support Biosph Sci 6:293–302

    PubMed  CAS  Google Scholar 

  58. Jeong H, Yim JH, Lee C, Choi SH, Park YK, Yoon SH, Hur CG, Kang HY, Kim D, Lee HH, Park KH, Park SH, Park HS, Lee HK, Oh TK, Kim JF (2005) Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 33:7066–7073

    Article  PubMed  CAS  Google Scholar 

  59. Ki MR, Min K, Kanth BK, Lee J, Pack SP (2012) Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO(2) sequestration application. Bioprocess Biosyst Eng 36:375–381

    Article  PubMed  Google Scholar 

  60. Ramanan R, Kannan K, Vinayagamoorthy N, Ramkumar KM, Sivanesan SD, Chakrabarti T (2009) Purification and characterization of a novel plant-type carbonic anhydrase from Bacillus subtilis. Biotechnol Bioprocess Eng 14:32–37

    Article  CAS  Google Scholar 

  61. Kim IG, Jo BH, Kang DG, Kim CS, Choi YS, Cha HJ (2012) Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 87:1091–1096

    Article  PubMed  CAS  Google Scholar 

  62. Sharma A, Bhattacharya A (2010) Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J Mol Catal B: Enzym 67:122–128

    Article  CAS  Google Scholar 

  63. Capasso C, De LV, Carginale V, Cannio R, Rossi M (2012) Biochemical properties of a novel and highly thermostable bacterial alpha-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1. J Enzyme InhibMed Chem 27:892–897

    Article  CAS  Google Scholar 

  64. Kanth BK, Min K, Kumari S, Jeon H, Jin ES, Lee J, Pack SP (2012) Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO(2) sequestration application. Appl Biochem Biotechnol 167:2341–2356

    Article  PubMed  CAS  Google Scholar 

  65. Li L, Fu ML, Zhao YH, Zhu YT (2012) Characterization of carbonic anhydrase II from Chlorella vulgaris in bio-CO2 capture. Environ Sci Pollut Res Int 19:4227–4232

    Article  PubMed  CAS  Google Scholar 

  66. Zevenhoven R, Eloneva S, Teir S (2006) Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catal Today 115:73–79

    Article  CAS  Google Scholar 

  67. Allen DJ, Brent GF (2010) Sequestering CO(2) by mineral carbonation: stability against acid rain exposure. Environ Sci Technol 44:2735–2739

    Article  PubMed  CAS  Google Scholar 

  68. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Article  PubMed  CAS  Google Scholar 

  69. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WM, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996

    Article  PubMed  CAS  Google Scholar 

  70. Beckman EJ (1999) Polymer synthesis – making polymers from carbon dioxide. Science 283:946–947

    Article  CAS  Google Scholar 

  71. Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  PubMed  CAS  Google Scholar 

  72. Astachov L, Nevo Z, Brosh T, Vago R (2011) The structural, compositional and mechanical features of the calcite shell of the barnacle Tetraclita rufotincta. J Struct Biol 175:311–318

    Article  PubMed  CAS  Google Scholar 

  73. Miyamoto H, Miyoshi F, Kohno J (2005) The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zoolog Sci 22:311–315

    Article  PubMed  CAS  Google Scholar 

  74. Fischer F, Tropsch H (1930) Process for the production of paraffin hydrocarbons with more than one carbon atom. US patent 1,746,464, 1930

    Google Scholar 

  75. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205

    Article  CAS  Google Scholar 

  76. Hori Y, Kikuchi K, Murata A, Suzuki S (1986) Production of methane and ethylene in electrochemical reduction of carbon-dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett 15:897–898

    Article  Google Scholar 

  77. Guerrero-Peacuterez M, Rosas J, Bedia J, Rodriacuteguez-Mirasol J, Cordero T (2009) Recent inventions in glycerol transformations and processing. Recent Patents Chem Eng 2:11–21

    Article  Google Scholar 

  78. Hu J, Li J, Gu Y, Guan Z, Mo W, Ni Y, Li T, Li G (2010) Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI. Appl Catal Gen 386:188–193

    Article  CAS  Google Scholar 

  79. Nguyen N, Demirel Y (2011) A novel biodiesel and glycerol carbonate production plant. Int J Chem Reactor Eng 9:A108

    Article  CAS  Google Scholar 

  80. Kaar JL, Oh HI, Russell AJ, Federspiel WJ (2007) Towards improved artificial lungs through biocatalysis. Biomaterials 28:3131–3139

    Article  PubMed  CAS  Google Scholar 

  81. Sreenivasan R, Bassett EK, Hoganson DM, Vacanti JP, Gleason KK (2011) Ultra-thin, gas permeable free-standing and composite membranes for microfluidic lung assist devices. Biomaterials 32:3883–3889

    Article  PubMed  CAS  Google Scholar 

  82. Oh HI, Ye SH, Johnson CA Jr, Woolley JR, Federspiel WJ, Wagner WR (2010) Hemocompatibility assessment of carbonic anhydrase modified hollow fiber membranes for artificial lungs. Artif Organs 34:439–442

    Article  PubMed  Google Scholar 

  83. Arazawa DT, Oh HI, Ye SH, Johnson CA Jr, Woolley JR, Wagner WR, Federspiel WJ (2012) Immobilized carbonic anhydrase on hollow fiber membranes accelerates CO(2) removal from blood. J Memb Sci 404–404:25–31

    Article  PubMed  Google Scholar 

  84. Ge J, Cowan RM, Tu C, McGregor ML, Trachtenberg MC (2002) Enzyme-based CO2 capture for advanced life support. Life Support Biosph Sci 8:181–189

    PubMed  Google Scholar 

  85. Cowan RM, Ge JJ, Qin YJ, McGregor ML, Trachtenberg MC (2003) CO2 capture by means of an enzyme-based reactor. Ann N Y Acad Sci 984:453–469

    Article  PubMed  CAS  Google Scholar 

  86. Satav SS, Bhat S, Thayumanavan S (2010) Feedback regulated drug delivery vehicles: carbon dioxide responsive cationic hydrogels for antidote release. Biomacromolecules 11:1735–1740

    Article  PubMed  CAS  Google Scholar 

  87. Roskos KV, Fritzinger BK, Tefft JA, Nakayama GR, Heller J (1995) Biocompatibility and in vivo morphine diffusion into a placebo morphine-triggered naltrexone delivery device in rabbits. Biomaterials 16:1235–1239

    Article  PubMed  CAS  Google Scholar 

  88. Hassan CM, Doyle FJ, Peppas NA (1997) Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules 30:6166–6173

    Article  CAS  Google Scholar 

  89. Han D, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y (2012) Two-way CO2-switchable triblock copolymer hydrogels. Macromolecules 45:7440–7445

    Article  CAS  Google Scholar 

  90. Bian Y, Rong Z, Chang TM (2012) Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: a novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant. Artif Cells Blood Substit Immobil Biotechnol 40:28–37

    Article  PubMed  CAS  Google Scholar 

  91. Gould SA, Moore EE, Hoyt DB, Ness PM, Norris EJ, Carson JL, Hides GA, Freeman IH, DeWoskin R, Moss GS (2002) The life-sustaining capacity of human polymerized hemoglobin when red cells might be unavailable. J Am Coll Surg 195:445–452

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zoë Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

González, J.M., Fisher, S.Z. (2014). Carbonic Anhydrases in Industrial Applications. In: Frost, S., McKenna, R. (eds) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7359-2_20

Download citation

Publish with us

Policies and ethics