Skip to main content

Ecological and Societal Benefits of Jellyfish

  • Chapter
  • First Online:
Jellyfish Blooms

Abstract

Jellyfish are often considered as stressors on marine ecosystems or as indicators of highly perturbed systems. Far less attention is given to the potential of such species to provide beneficial ecosystem services in their own right. In an attempt to redress this imbalance, we take the liberty of portraying jellyfish in a positive light and suggest that the story is not entirely one of doom and gloom. More specifically, we outline how gelatinous marine species contribute to the four categories of ecosystem services (regulating, supporting, provisioning and cultural) defined by the Millennium Ecosystem Assessment. This discussion ranges from the role of jellyfish in carbon capture and advection to the deep ocean through to the creation of microhabitat for developing fishes and the advancement of citizen science programmes. Attention is paid also to incorporation of gelatinous species into fisheries or ecosystem-level models and the mechanisms by which we can improve the transfer of information between jellyfish researchers and the wider non-specialist community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addad S, Exposito J-Y, Faye C, Ricard-Blum S, Lethias C (2011) Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9:967–983

    PubMed  CAS  Google Scholar 

  • Alldredge AL (1976) Discarded appendicularian houses as sources of food, surface habitats and particulate organic matter in planktonic environments. Limnol Oceanogr 21:14–23

    CAS  Google Scholar 

  • Andersen V (1998) Salp and pyrosomid blooms and their importance in biogeochemical cycles. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 125–137

    Google Scholar 

  • Anonymous (2005) Millennium ecosystem assessment. Ecosystems and human well-being: biodiversity synthesis. Ecol Manage Restor 6:226–227, World Resources Institute, Washington, DC

    Google Scholar 

  • Arai MN (1988) Interactions of fish and pelagic coelenterates. Can J Zool 66:1913–1927

    Google Scholar 

  • Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc UK 85:523–536

    Google Scholar 

  • Arai MN, Welch DW, Dunsmuir AL, Jacobs MC, Ladouceur AR (2003) Digestion of pelagic Ctenophora and Cnidaria by fish. Can J Fish Aquat Sci 60:825–829

    Google Scholar 

  • Ates RML (1988) Medusivorous fishes a review. Zoologische Mededelingen (Leiden) 62:29–42

    Google Scholar 

  • Berline L, Stemmann L, Vichi M, Lombard F, Gorsky G (2011) Impact of appendicularians on detritus and export fluxes: a model approach at DyFAMed site. J Plankton Res 33:855–872

    Google Scholar 

  • Billett DSM, Bett BJ, Jacobs CL, Rouse IP, Wigham BD (2006) Mass deposition of jellyfish in the deep Arabian Sea. Limnol Oceanogr 51:2077–2083

    Google Scholar 

  • Bishop RE, Geiger SP (2006) Phronima energetics: Is there a bonus to the barrel? Crustaceana 79:1059–1070

    Google Scholar 

  • Boero F (2002) Gelatinous zooplankton: here today and gone tomorrow, but ignored at our peril. Ocean Challenge 12(1):24–27

    Google Scholar 

  • Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S (2008) Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310

    Google Scholar 

  • Bonnet X, Shine R, Lourdais O (2002) Taxonomic chauvinism. Trends Ecol Evol 17:1–3

    Google Scholar 

  • Breitburg DL, Crump BC, Dabiri JO, Gallegos CL (2010) Ecosystem engineers in the pelagic realm: alteration of habitat by species ranging from microbes to jellyfish. Integr Comp Biol 50:188–200

    PubMed  Google Scholar 

  • Brodeur RD (1998) In situ observations of the association between juvenile fishes and scyphomedusae in the Bering Sea. Mar Ecol Prog Ser 163:11–20

    Google Scholar 

  • Brodeur RD, Sugisaki H, Hunt GL (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233:89–103

    Google Scholar 

  • Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR et al (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570

    PubMed  CAS  Google Scholar 

  • Castro JJ, Santiago JA, Santana-Ortega AT (2001) A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis. Rev Fish Biol Fisher 11:255–277

    Google Scholar 

  • Chalfie M, Kain SR (2006) Green fluorescent protein. Properties, applications, and protocols, 2nd edn. Wiley, Hoboken, 443 pp

    Google Scholar 

  • Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    PubMed  CAS  Google Scholar 

  • Colin SP, Costello JH, Graham WM, Higgins J (2005) Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnol Oceanogr 50:1264–1268

    Google Scholar 

  • Condon RH, Steinberg DK, del Giorgio PA, Bouvier TC, Bronk DA, Graham WM, Ducklow HW (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci U S A 108:10225–10230

    PubMed  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Naeem S, Limburg K, Paruelo J, O’Neill RV, Raskin R, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Costello JH, Colin SP (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar Biol 121:327–334

    Google Scholar 

  • Costello JH, Colin SP (1995) Flow and feeding by swimming scyphomedusae. Mar Biol 124:399–406

    Google Scholar 

  • Costello JH, Colin SP (2002) Prey resource use by coexistent hydromedusae from Friday Harbor, Washington. Limnol Oceanogr 47:934–942

    Google Scholar 

  • Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127:265–290

    Google Scholar 

  • Curtis DE (2001) “The Lion’s Mane”: a topical review. The Baker Street J 56(4):15–19

    Google Scholar 

  • Dawson MN, Hamner WM (2003) Geographic variation and behavioral evolution in marine plankton: the case of Mastigias (Scyphozoa, Rhizostomeae). Mar Biol 143:1161–1174

    Google Scholar 

  • Dawson MN, Martin LE, Penland LK (2001) Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451:131–144

    Google Scholar 

  • Díaz S, Tilman D, Fargione J, Chapin F, Dirzo R (2005) Biodiversity regulation of ecosystem services. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human wellbeing: current state and trends: findings of the condition and trends Working Group, Chapter 11. Island Press, Washington, DC, pp 297–329

    Google Scholar 

  • Dong J, Jiang L-X, Tan K-F, Liu H-Y, Purcell JE, Li P-J, Ye C-C (2009) Stock enhancement of the edible jellyfish (Rhopilema esculentum Kishinouye) in Liaodong Bay, China: a review. Hydrobiologia 616:113–118

    Google Scholar 

  • Doyle TK, Houghton JDR, McDevitt R, Davenport J, Hays GC (2007) The energy density of jellyfish: estimates from bomb-calorimetry and proximate-composition. J Exp Mar Biol Ecol 343:239–252

    Google Scholar 

  • Fanelli D (2010) Do pressures to publish increase scientists’ bias? An empirical support from US States data. PLoS One 5(4):e10271

    PubMed  Google Scholar 

  • Fautin DG (2009) Structural diversity, systematics, and evolution of cnidae. Toxicon 54:1054–1064

    PubMed  CAS  Google Scholar 

  • Fenaux R (1998) The classification of Appendicularians. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, NY, pp 295–306

    Google Scholar 

  • Fleming NEC, Houghton JDR, Magill CL, Harrod C (2011) Preservation methods alter stable isotope values in gelatinous zooplankton: implications for interpreting trophic ecology. Mar Biol 158:2141–2146

    Google Scholar 

  • Garm A, Oskarsson M, Nilsson D-E (2011) Box jellyfish use terrestrial visual cues for navigation. Curr Biol 21:798–803

    PubMed  CAS  Google Scholar 

  • Gasca R, Haddock SHD (2004) Associations between gelatinous zooplankton and hyperiid amphipods (Crustacea: Peracarida) in the Gulf of California. Hydrobiologia 530:529–535

    Google Scholar 

  • Godeaux J (1998) The relationships and systematics of the Thaliacea, with keys for identification. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, NY, pp 273–294

    Google Scholar 

  • Gorsky G, Fenaux R (1998) The role of appendicularia in marine food webs. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, NY, pp 161–169

    Google Scholar 

  • Graham CT, Harrod C (2009) Implications of climate change for the fishes of the British Isles. J Fish Biol 74:1143–1205

    PubMed  CAS  Google Scholar 

  • Graham WM, Kroutil RM (2001) Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. J Plankton Res 23:67–74

    Google Scholar 

  • Greene HW (2005) Organisms in nature as a central focus for biology. Trends Ecol Evol 20:23–27

    PubMed  Google Scholar 

  • Haddock SHD (2004) A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530:549–556

    Google Scholar 

  • Haddock SHD (2007) Comparative feeding behavior of planktonic ctenophores. Int Comput Biol 47:847–853

    Google Scholar 

  • Hardy AC (1956) The open sea: the world of plankton. Collins, London

    Google Scholar 

  • Harrod C, Grey J, McCarthy TK, Morrissey M (2005) Stable isotope analyses provide new insights into ecological plasticity in a mixohaline population of European eel. Oecologia 144:673–683

    PubMed  Google Scholar 

  • Hays GC, Bastian T, Doyle TK, Fossette S, Gleiss AC, Gravenor MB, Hobson VJ, Humphries NE, Lilley MKS, padee NG, Sims DW (2012) High activity and Levy searches: jellyfish can search the water column like fish. Proc Roy Soc Ser B Lon 279:465–473

    Google Scholar 

  • Heaslip SG, Iverson SJ, Bowen WD, James MC (2012) Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras. PLoS One 7(3):e33259

    PubMed  CAS  Google Scholar 

  • Hodgson WC, Isbister GK (2009) The application of toxins and venoms to cardiovascular drug discovery. Curr Opin Pharmacol 9:173–176

    PubMed  CAS  Google Scholar 

  • Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29:253–268

    Google Scholar 

  • Hong J, He-Qin C, Hai-Gen X, Arrequin-Sanchez F, Zetina-Rejon MJ, Luna PDM, Le Quesne WJF (2008) Trophic controls of jellyfish blooms and links with fisheries in the East China Sea. Ecol Model 212:492–503

    Google Scholar 

  • Houghton JDR, Doyle TK, Wilson MW, Davenport J, Hays GC (2006) Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87:1967–1972

    PubMed  Google Scholar 

  • Hsieh YHP, Leong FM, Rudloe J (2001) Jellyfish as food. Hydrobiologia 451:11–17

    Google Scholar 

  • Katija K, Dabiri JO (2009) A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460:624–626

    PubMed  CAS  Google Scholar 

  • Kideys AE (2002) Fall and rise of the Black Sea ecosystem. Science 297:1482–1484

    PubMed  CAS  Google Scholar 

  • Kingsford MJ, Choat JH (1989) Horizontal distribution patterns of presettlement reef fish – are they influenced by the proximity of reefs. Mar Biol 101:285–297

    Google Scholar 

  • Kingsford MJ, Pitt KA, Gillanders BM (2000) Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanogr Mar Biol Annu Rev 38:85–156

    Google Scholar 

  • Knowlton N (2004) Multiple “stable” states and the conservation of marine ecosystems. Prog Oceanogr 60:387–396

    Google Scholar 

  • Kotler BP, Brown JS, Slotow RH, Goodfriend WL, Strauss M (1993) The influence of snakes on the foraging behavior of gerbils. Oikos 67:309–316

    Google Scholar 

  • Last JM (1978) The food of four species of pleuronectiform larvae in the eastern English Channel and southern North Sea. Mar Biol 45:359–368

    Google Scholar 

  • Lebrato M, Jones DOB (2009) Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol Oceanogr 54:1197–1209

    CAS  Google Scholar 

  • Lebrato M, Pitt KA, Sweetman AK, Jones DOB, Cartes JE, Oschlies A, Condon RH, Molinero JC, Adler L, Gaillard C, Lloris D, Billett BSM (2012) Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690:227–245

    CAS  Google Scholar 

  • Link JS, Ford MD (2006) Widespread and persistent increase of Ctenophora in the continental shelf ecosystem off NE USA. Mar Ecol Prog Ser 320:153–159

    Google Scholar 

  • Lynam CP, Brierley AS (2007) Enhanced survival of 0-group gadoid fish under jellyfish umbrellas. Mar Biol 150:1397–1401

    Google Scholar 

  • Lynam CP, Heath MR, Hay SJ, Brierley AS (2005) Evidence for impacts by jellyfish on North Sea herring recruitment. Mar Ecol Prog Ser 298:157–167

    Google Scholar 

  • Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:492–493

    Google Scholar 

  • Mackie GO (2002) What’s new in cnidarian biology? Can J Zool 80:1649–1653

    Google Scholar 

  • Mackie GO, Pugh PR, Purcell JE (1987) Siphonophore biology. Adv Mar Biol 24:97–262

    Google Scholar 

  • Madin LP (1982) Production, composition and sedimentation of salp fecal pellets in oceanic waters. Mar Biol 67:39–45

    Google Scholar 

  • Madin LR, Deibel D (1998) Feeding and energetics of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, NY, pp 81–103

    Google Scholar 

  • Mansueti R (1963) Symbiotic behavior between small fishes and jellyfishes, with new data on that between the Stromateid, Peprilus alepidotus, and the Scyphomedusa, Chrysaora quinquecirrha. Copeia 1:40–48

    Google Scholar 

  • Mapstone GM (2003) Redescriptions of two physonect siphonophores, Apolemia uvaria (Lesueur, 1815) and Tottonia contorta Margulis, 1976, with comments on a third species Ramosia vitiazi Stepanjants, 1967 (Cnidaria: Hydrozoa: Apolemiidae). Syst Biodivers 1:181–212

    Google Scholar 

  • Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agr Ecosyst Environ 74:229–273

    Google Scholar 

  • Martorelli SR (2001) Digenea parasites of jellyfish and ctenophores of the southern Atlantic. Hydrobiologia 451:305–310

    Google Scholar 

  • Masuda A, Baba T, Dohmae N, Yamamura M, Wada H, Ushida K (2007) Mucin (Qniumucin), a glycoprotein from jellyfish, and determination of its main chain structure. J Nat Prod 70:1089–1092

    PubMed  CAS  Google Scholar 

  • Mochioka N, Iwamizu M (1996) Diet of anguilloid larvae: Leptocephali feed selectively on larvacean houses and fecal pellets. Mar Biol 125:447–452

    Google Scholar 

  • Monterey Bay Aquarium (2004) Jellies: living art. Summative evaluation. Monterey Bay Aquarium, New York, 49 pp

    Google Scholar 

  • Moss AG, Estes AM, Muellner LA, Morgan DD (2001) Protistan epibionts of the ctenophore Mnemiopsis mccradyi Mayer. Hydrobiologia 451:295–304

    Google Scholar 

  • Ohta N, Sato M, Ushida K, Kokubo M, Baba T, Taniguchi K, Urai M, Kihirak K, Mochida J (2009) Jellyfish mucin may have potential disease-modifying effects on osteoarthritis. BMC Biotechnol 9:98

    PubMed  Google Scholar 

  • Olson MH (1996) Ontogenetic niche shifts in largemouth bass: variability and consequences for first-year growth. Ecology 77:179–190

    Google Scholar 

  • Omori M, Nakano E (2001) Jellyfish fisheries in Southeast Asia. Hydrobiologia 451:19–26

    Google Scholar 

  • Pagès F (2000) Biological associations between barnacles and jellyfish with emphasis on the ectoparasitism of Alepas pacifica (Lepadomorpha) on Diplulmaris malayensis (Scyphozoa). J Nat Hist 34:2045–2056

    Google Scholar 

  • Pagès F, Corbera J, Lindsay D (2007) Piggybacking pycnogonids and parasitic narcomedusae on Pandea rubra (Anthomedusae, Pandeidae). Plankt Benth Res 2:83–90

    Google Scholar 

  • Pauly D, Graham W, Libralato S, Morissette L, Palomares MLD (2009) Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616:67–85

    Google Scholar 

  • Perissinotto R, Pakhomov EA (1997) Feeding association of the copepod Rhincalanus gigas with the tunicate salp Salpa thompsoni in the southern ocean. Mar Biol 127:479–483

    Google Scholar 

  • Piraino S, Boero F, Aeschbach B, Schmid V (1996) Reversing the life cycle: Medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190:302–312

    Google Scholar 

  • Piraino S, Fanelli G, Boero F (2002) Variability of species’ roles in marine communities: change of paradigms for conservation priorities. Mar Biol 140:1067–1074

    Google Scholar 

  • Pitt KA, Koop K, Rissik D (2005) Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). J Exp Mar Biol Ecol 315:71–86

    CAS  Google Scholar 

  • Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149

    CAS  Google Scholar 

  • Purcell JE (1981) Dietary composition and diel feeding patterns of epipelagic siphonophores. Mar Biol 65:83–90

    Google Scholar 

  • Purcell JE (1984) Predation on fish larvae by Physalia physalis, the Portuguese man of war. Mar Ecol Prog Ser 19:189–191

    Google Scholar 

  • Purcell JE (1989) Predation on fish larvae and eggs by the hydromedusa Aequorea victoria at a herring spawning ground in British Columbia. Can J Fish Aquat Sci 46:1415–1427

    Google Scholar 

  • Purcell JE (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216:335–342

    Google Scholar 

  • Purcell JE (1997) Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates, and effects on prey populations. Annales de l’Instit Oceanogr 73:125–137

    Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44

    Google Scholar 

  • Purcell JE, Grover JJ (1990) Predation and food limitation as causes of mortality in larval herring at a spawning ground in British Columbia. Mar Ecol Prog Ser 59:55–61

    Google Scholar 

  • Purcell JE, Uye S-I, Lo W-T (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174

    Google Scholar 

  • Purcell JE, Clarkin E, Doyle TK (2012) Foods of Velella velella (Cnidaria: Hydrozoa) in algal rafts and its distribution in Irish seas. Hydrobiologia 690:47–55

    CAS  Google Scholar 

  • Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24:312–322

    PubMed  Google Scholar 

  • Riisgard HU, Larsen PS (2010) Particle capture mechanisms in suspension-feeding invertebrates. Mar Ecol Prog Ser 418:255–293

    Google Scholar 

  • Robison BH (2004) Deep pelagic biology. J Exp Mar Bio Ecol 300:253–272

    Google Scholar 

  • Runge JA, Pepin P, Silvert W (1987) Feeding behavior of the Atlantic mackerel Scomber scombrus on the hydromedusa Aglantha digitale. Mar Biol 94:329–333

    Google Scholar 

  • Sato R, Tanaka Y, Ishimaru T (2001) House production by Oikopleura dioica (Tunicata, Appendicularia) under laboratory conditions. J Plankton Res 23:415–423

    Google Scholar 

  • Silvertown J (2009) A new dawn for citizen science. Trends Ecol Evol 24:467–471

    PubMed  Google Scholar 

  • Smith S, Ward V, House A (2011) ‘Impact’ in the proposals for the UK’s Research Excellence Framework: shifting the boundaries of academic autonomy. Res Policy 40:1369–1379

    Google Scholar 

  • Sørnes TA, Hosia A, Båmstedt U, Aksnes DL (2008) Swimming and feeding in Periphylla periphylla (Scyphozoa, Coronatae). Mar Biol 153:653–659

    Google Scholar 

  • Steinberg DK, Silver MW, Pilskaln CH, Coale SL, Paduan JB (1994) Midwater zooplankton communities on pelagic detritus (giant larvacean houses) in Monterey Bay, California. Limnol Oceanogr 39:1606–1620

    Google Scholar 

  • Towanda T, Thuesen EV (2006) Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum. Mar Ecol Prog Ser 315:221–236

    Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    PubMed  CAS  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102

    Google Scholar 

  • Welsh DT, Dunn RJK, Meziane T (2009) Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635:351–362

    CAS  Google Scholar 

  • West EJ, Pitt KA, Welsh DT, Koop K, Rissik D (2009) Top-down and bottom-up influences of jellyfish on primary productivity and planktonic assemblages. Limnol Oceanogr 54:2058–2071

    Google Scholar 

  • Wiebe PH, Madin LP, Haury LR, Harbison GR, Philbin LM (1979) Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar Biol 53:249–255

    Google Scholar 

  • You K, Ma C, Gao H, Li F, Zhang M, Qiu Y, Wang B (2007) Research on the jellyfish (Rhopilema esculentum Kishinouye) and associated aquaculture techniques in China: current status. Aquac Int 15:479–488

    Google Scholar 

  • Zimmer M (2009) GFP: from jellyfish to the Nobel prize and beyond. Chem Soc Rev 38:2823–2832

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the following research grants: EcoJel project, funded through the INTERREG IVA programme of the European Regional Development Fund (TKD, GCH), and the GilPat project under the Sea Change strategy with the support of the Marine Institute and the Marine Research Sub-Programme of the National Development Plan 2007–2013 (cofinanced under the European Regional Development Fund) (TKD). We would also like to acknowledge Prof. F Boero and an anonymous reviewer for providing useful comments to help improve this chapter and to MC Gallagher for helpful comments on jellyfish-fish associations. Finally, we thank Cathy Lucas for her contribution to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas K. Doyle or Jonathan D. R. Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doyle, T.K., Hays, G.C., Harrod, C., Houghton, J.D.R. (2014). Ecological and Societal Benefits of Jellyfish. In: Pitt, K., Lucas, C. (eds) Jellyfish Blooms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7015-7_5

Download citation

Publish with us

Policies and ethics