Skip to main content

What Are Jellyfishes and Thaliaceans and Why Do They Bloom?

  • Chapter
  • First Online:
Jellyfish Blooms

Abstract

The jellyfishes and thaliaceans comprise primarily planktonic species of cnidarians, ctenophores (jellyfishes) and chordates (thaliaceans or pelagic tunicates). Grouped together because of their gelatinous bodies, these diverse species nonetheless differ in their evolutionary histories and may have distinct morphologies, life histories, ecologies and other traits. Subsets of these species occur at some times and places in highly elevated concentrations, i.e. they accumulate, aggregate, bloom or swarm. Why jellyfishes and thaliaceans occur in such masses is, however, somewhat unclear; the reasons obscured in part by a tendency to treat many gelatinous zooplankton, including jellyfishes and thaliaceans, as a single functional group. Here we summarize the evolutionary relationships among gelatinous zooplankton and review the characteristics of blooms, before focusing on comparing and contrasting medusae, ctenophores and thaliaceans. We highlight some substantial knowledge gaps, emphasize biological factors that likely contribute to blooms and outline a population genetic framework for investigating the ecological causes of boom and bust population dynamics in the plankton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.oed.com/view/Entry/101029?redirectedFrom=jellyfish#eid ‘The popular name of various acalephs, medusas, or sea-nettles, from their gelatinous structure.’ Here, we use ‘jellyfish’ to refer to one or more individuals within a single species and ‘jellyfishes’ to refer to multiple species.

References

  • Acuña JL (2001) Pelagic tunicates: why gelatinous? Am Nat 158:100–107

    PubMed  Google Scholar 

  • Acuña JL, López-Urrutia A, Colin S (2011) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–1629

    PubMed  Google Scholar 

  • Aksnes DL, Giske J (1990) Habitat profitability in pelagic habitats. Mar Ecol Prog Ser 64:209–215

    Google Scholar 

  • Aleyev YG (1977) Nekton. Jung, The Hague

    Google Scholar 

  • Alldredge A, Madin LP (1982) Pelagic tunicates: unique herbivores in the marine plankton. BioScience 32:655–663

    Google Scholar 

  • Andersen V (1998) Salp and pyrosomid blooms and their importance in biogeochemical cycles. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 125–137

    Google Scholar 

  • Appeltans W, and 120 other authors (2012) The magnitude of global marine species diversity. Curr Biol. http://dx.doi.org/10.1016/j.cub.2012.09.036. doi:10.1016/j.cub.2012.09.036#doilink

  • Arai MN (1997) A functional biology of Scyphozoa. Chapman and Hall, London

    Google Scholar 

  • Arai MN (2009) The potential importance of podocysts to the formation of scyphozoan blooms: a review. Hydrobiologia 616:241–246

    Google Scholar 

  • Bailey KM, Batty RS (1984) Laboratory study of predation by Aurelia aurita on larvae of cod, flounder, plaice and herring: development and vulnerability to capture. Mar Biol 83:287–291

    Google Scholar 

  • Baker LD, Reeve MR (1974) Laboratory culture of the lobate ctenophore Mnemiopsis mccradyi with notes on feeding and fecundity. Mar Biol 26:57–62

    Google Scholar 

  • Båmstedt U (1990) Trophodynamics of the scyphomedusae Aurelia aurita. Predation rate in relation to abundance, size and type of prey organism. J Plankton Res 12:215–229

    Google Scholar 

  • Bayha KM, Dawson MN (2010) A new family of allomorphic jellyfish, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton. Biol Bull 219:249–267

    PubMed  Google Scholar 

  • Bayha KM, Dawson MN, Collins AG, Barbeitos MS, Haddock SHD (2010) Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integr Comp Biol 50:436–455

    CAS  PubMed  Google Scholar 

  • Benović A, Dubravko J, Bender A (1987) Enigmatic changes in the hydromedusan fauna of the northern Adriatic Sea. Nature 326:597–600

    Google Scholar 

  • Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272

    Google Scholar 

  • Bone Q (2005) Gelatinous animals and physiology. J Mar Biol Assoc UK 85:641–653

    Google Scholar 

  • Bone Q, Carré C, Chang P (2003) Tunicate feeding filters. J Mar Biol Assoc UK 83:907–919

    Google Scholar 

  • Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238

    Google Scholar 

  • Breitburg DL, Loher T, Pacey CA, Gerstein A (1997) Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol Monogr 67:489–507

    Google Scholar 

  • Brodeur RD, Mills CE, Overland JE, Walters GE, Schumacher JD (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish Oceanogr 8:296–306

    Google Scholar 

  • Brodeur RD, Decker MB, Ciannelli L, Purcell JE, Bond NA, Stabeno PJ, Acuna E, jr Hunt GL (2008) Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Progr Oceanogr 77:103–111

    Google Scholar 

  • Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D (2012) Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690:3–20

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Cargo DG, Schultz LP (1966) Notes on the biology of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Chesapeake Sci 7:95–100

    Google Scholar 

  • Cargo DG, Schultz LP (1967) Further observations on the biology of the sea nettle and other jellyfishes in Chesapeake Bay. Chesapeake Sci 8:209–220

    Google Scholar 

  • Castro P, Huber ME (2003) Marine biology, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Cole LC (1954) The population consequences of life history phenomena. Quart Rev Biol 29:103–137

    CAS  PubMed  Google Scholar 

  • Colgan DJ, Ponder WF, Beacham E, Macaranas J (2007) Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Mol Phylogenet Evol 42:717–737

    CAS  PubMed  Google Scholar 

  • Collins AG (2002) Phylogeny of medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432

    Google Scholar 

  • Collins AG, Daly M (2005) A new deepwater species of stauromedusae, Lucernaria janetae (Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based on nuclear and mitochondrial rDNA data. Biol Bull 208:221–230

    CAS  PubMed  Google Scholar 

  • Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115

    PubMed  Google Scholar 

  • Condon RH, Decker MB, Purcell JE (2001) Effects of low dissolved oxygen on survival and reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451:89–95

    Google Scholar 

  • Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, Uye S-I, Gelcich S (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 62:160–169

    Google Scholar 

  • Costello JH, Colin SP (1995) Flow and feeding by swimming scyphomedusae. Mar Biol 124:399–406

    Google Scholar 

  • Costello JH, Bayha KM, Mianzan HW, Shiganova TA, Purcell JE (2012) The ctenophore Mnemiopsis leidyi: transitions from a native to an exotic species. Hydrobiologia 690:21–46

    Google Scholar 

  • Crow JF (1994) Advantages of asexual reproduction. Dev Gen 15:205–213

    CAS  Google Scholar 

  • Cushing DH (1984) The gadoid outburst in the North Sea. ICES J Mar Sci 41:159–166

    Google Scholar 

  • Daryanabard R, Dawson MN (2008) Jellyfish blooms: Crambionella orsini (Scyphozoa, Rhizostomeae) in the Gulf of Oman, Iran, 2002–2003. J Mar Biol Assoc UK 88:477–483

    Google Scholar 

  • Dawson MN (2004) Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with an emphasis on Scyphozoa. Hydrobiologia 530(531):249–260

    Google Scholar 

  • Dawson MN (2005) Five new subspecies of Mastigias (Scyphozoa: Rhizostomeae: Mastigiidae) from marine lakes, Palau, Micronesia. J Mar Biol Assoc UK 85:679–694

    Google Scholar 

  • Dawson MN, Hamner WM (2009) A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia 616:193–215

    Google Scholar 

  • Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria: Scyphozoa). Biol Bull 200:92–96

    CAS  PubMed  Google Scholar 

  • Dawson MN, Martin LE (2001) Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451:259–273

    Google Scholar 

  • Dawson MN, Martin LE, Penland LK (2001) Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451:131–144

    Google Scholar 

  • Decker MB, Breitburg DL, Purcell JE (2004) Effects of low dissolved oxygen on predation by the ctenophore, Mnemiopsis leidyi, on zooplankton. Mar Ecol Prog Ser 280:163–172

    Google Scholar 

  • Deibel D (1982) Laboratory determined mortality, fecundity and growth rates of Thalia democratica Forskal and Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 4:143–153

    Google Scholar 

  • Deibel D, Lowen B (2012) A review of the life cycles and life-history adaptations of pelagic tunicates to environmental conditions. ICES J Mar Sci 69:358–369

    Google Scholar 

  • Deibel D, Paffenhöfer G-A (2009) Predictability of patches of neritic salps and doliolids (Tunicata, Thaliacea). J Plankton Res 31:1571–1579

    Google Scholar 

  • Deibel D, Cavaletto JF, Riehl M, Gardner WS (1992) Lipid and lipid class content of the pelagic tunicate Oikopleura vanhoeffeni. Mar Ecol Prog Ser 88:297–302

    CAS  Google Scholar 

  • Dobzhansky T (1964) Biology, molecular and organismic. Am Zool 4:443–452

    CAS  PubMed  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Google Scholar 

  • Finenko GA, Abolmasova GI, Romanova ZA (1995) Intensity of the nutrition, respiration and growth of Mnemiopsis mccradyi in relation to grazing conditions. Biologia Morya 21:315–320 (in Russian)

    Google Scholar 

  • Foxton P (1966) The distribution and life history of Salpa thompsoni Foxton, with observations on a related species, Salpa gerlachei Foxton. Discov Rep 34:1–116

    Google Scholar 

  • Fuentes V, Angel DL, Bayha KM, Atienza D, Edelist D, Bordehore C, Gili J-M, Purcell JE (2010) Blooms of the invasive ctenophore, Mnemiopsis leidyi, span the Mediterranean Sea in 2009. Hydrobiologia 645:23–37

    CAS  Google Scholar 

  • Gerritsen J, Strickler JR (1997) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Bd Can 34:73–82

    Google Scholar 

  • Ghiselin MT (1969) The evolution among hermaphroditism among animals. Quart Rev Biol 44:189–208

    CAS  PubMed  Google Scholar 

  • Gibson DM, Paffenhöfer G-A (2000) Feeding and growth rates of the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 22:1485–1500

    Google Scholar 

  • Gibson DM, Paffenhöfer G-A (2002) Asexual reproduction of the doliolid Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 24:703–712

    Google Scholar 

  • Godeaux J, Bone Q, Braconnot J-C (1998) Anatomy of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 1–24

    Google Scholar 

  • Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222

    CAS  Google Scholar 

  • Govindarajan AF, Bucklin A, Madin LP (2011) A molecular phylogeny of the Thaliacea. J Plankton Res 33:843–853

    CAS  Google Scholar 

  • Graham WM, Bahya KM (2007) Biological invasions by marine jellyfish. Biol Inv 193:239–255

    Google Scholar 

  • Graham WM, Pagès F, Hamner WM (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199–212

    Google Scholar 

  • Greene CH, Landry MR, Monger BC (1986) Foraging behaviour and prey selection by the ambush entangling predator Pleurobrachia bachei. Ecology 67:1493–1501

    Google Scholar 

  • Haddock SHD (2004) A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530(531):549–556

    Google Scholar 

  • Hadfield MG, Strathmann MF (1996) Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanol Acta 19:323–334

    Google Scholar 

  • Hagadorn JW, Dott RH, jr Damrow D (2002) Stranded on a Late Cambrian shoreline: medusa from central Wisconsin. Geology 30:147–150

    Google Scholar 

  • Hamner WM (1985) The importance of ethology for investigations of marine zooplankton. Bull Mar Sci 37:414–424

    Google Scholar 

  • Hamner WM, Dawson MN (2009) A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616:161–191

    Google Scholar 

  • Hamner WM, Jensen RM (1974) Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Am Zool 14:833–849

    Google Scholar 

  • Hamner WM, Madin LP, Alldredge AL, Gilmer RW, Hamner PP (1975) Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol Oceanogr 20:907–917

    Google Scholar 

  • Hamner WM, Hamner PP, Strand SW (1994) Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Mar Biol 119:347–356

    Google Scholar 

  • Han C-M, Uye S-I (2010) Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankt Benth Res 5:98–105

    Google Scholar 

  • Hansson LJ, Kiørboe T (2006) Effects of large gut volume in gelatinous zooplankton: ingestion rate, bolus production and food patch utilization by the jellyfish Sarsia tubulosa. J Plankton Res 28:937–942

    Google Scholar 

  • Hamner WM (1975) Underwater observations of blue-water plankton: logistics, techniques, and safety procedures for divers at sea. Limnol Oceanogr 20:1045–1051

    Google Scholar 

  • Harbison GR (1992) The gelatinous inhabitants of the ocean interior. Oceanus 35:18–23

    Google Scholar 

  • Harbison GR, Miller RL (1986) Not all ctenophores are hermaphrodites. Studies on the systematics, distribution, sexuality and development of two species of Ocyropsis. Mar Biol 90:413–424

    Google Scholar 

  • Hensen V (1887) Über die Bestimmung des Planktons oder des im Meer treibenden Materials an Pflanzen und Thieren. Bericht der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere 5:1–109

    Google Scholar 

  • Heron AC (1972) Population ecology of colonizing species: the pelagic tunicate Thalia democratica I. Individual growth rate and generation time. Oecologia 10:269–293

    Google Scholar 

  • Heron AC, Benham EE (1985) Life history parameters as indicators of growth rate in three salp populations. J Plankton Res 7:365–379

    Google Scholar 

  • Hirota J (1974) Quantitative natural history of Pleurobrachia bachei in La Jolla Bight. Fish Bull 72:295–335

    Google Scholar 

  • Holst S (2012) Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690:127–140

    Google Scholar 

  • Holst S, Sotje I, Tiemann H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710

    Google Scholar 

  • Hopcroft RR, Roff JC (1995) Zooplankton growth rates: extraordinary production by the larvacean Oikopleura dioica in tropical waters. J Plankton Res 17:205–220

    Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    CAS  PubMed  Google Scholar 

  • Ishii H, Katsukoshi K (2010) Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J Oceanogr 66:329–336

    Google Scholar 

  • Ishii H, Takagi A (2003) Development time of planula larvae on the oral arms of the scyphomedusa Aurelia aurita. J Plankton Res 25:1447–1450

    Google Scholar 

  • Ishii H, Ohba T, Kobayashi T (2008) Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankt Benth Res 3(Suppl):107–113

    Google Scholar 

  • Jackson JBC (2008) Ecological extinction and evolution in the brave new ocean. Proc Natl Acad Sci U S A 105:11458–11465

    CAS  PubMed  Google Scholar 

  • Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS One 8(8):e72683

    Google Scholar 

  • Jarms G, Tiemann H, Båmstedt U (2002) Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar Biol 141:647–657

    Google Scholar 

  • Jörger KM, Stöger I, Kano Y, Fukuda H, Knebelsberger T, Schrödl M (2010) On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol Biol 10:323

    PubMed  Google Scholar 

  • Kakinuma Y (1975) An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull Mar Biol Statn Asamushi 15:101–113 (plus Plates III to VI)

    Google Scholar 

  • Kawahara M, Uye S, Ohtsu K, Iizumi H (2006) Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar Ecol Prog Ser 307:161–173

    Google Scholar 

  • Kawahara M, Ohtsu K, Uye S (2012) Bloom or non-bloom in the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae): roles of dormant podocysts. J Plankton Res 307:161–173

    Google Scholar 

  • Klussmann-Kolb A, Dinapoli A (2006) Systematic position of the pelagic Thecosomata and Gymnosomata within Opisthobranchia (Mollusca, Gastropoda) – revival of the Pteropoda. J Zool Syst Evol Res 44:118–129

    Google Scholar 

  • Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C (2008) From sea to land and beyond – new insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evol Biol 8:57

    PubMed  Google Scholar 

  • Kremer P, Reeve MR (1989) Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. II. Carbon budgets and growth model. J Plankton Res 11:553–574

    Google Scholar 

  • Larson RJ (1986) Water content, organic content, and carbon and nitrogen composition of medusa from the northeast Pacific. J Exp Mar Biol Ecol 99:107–120

    Google Scholar 

  • Lee PLM, Dawson MN, Neill SP, Robins PE, Houghton JDR, Doyle TK, Hays GC (2013) Identification of genetically and oceanographically distinct blooms of jellyfish. J Roy Soc Inter 10(80):20120920

    Google Scholar 

  • Lehtiniemi M, Lehmann A, Javidpour J, Myrberg K (2012) Spreading and physico-biological reproduction limitations of the invasive American comb jelly Mnemiopsis leidyi in the Baltic Sea. Biol Inv 14:341–354

    Google Scholar 

  • Loeb VJ, Santora JA (2011) Population dynamics of Salpa thompsoni near the Antarctic Peninsula: growth rates and interannual variations in reproductive activity (1993–2009). Prog Oceanogr 96:93–107

    Google Scholar 

  • Lotan A, Ben-Hillel R, Loya Y (1992) Life cycle of Rhopilema nomadica: a new immigrant scyphomedusan in the Mediterranean. Mar Biol 112:237–242

    Google Scholar 

  • Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246

    Google Scholar 

  • Lucas CH, Lawes S (1998) Sexual reproduction of the scyphomedusa Aurelia aurita in relation to variable food supply. Mar Biol 131:629–638

    Google Scholar 

  • Lucas CH, Pitt KA, Purcell JE, Lebrato M, Condon RH (2011) What’s in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 92:1704

    Google Scholar 

  • Lucas CH, Graham WM, Widmer C (2012) Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Adv Mar Biol 63:133–196

    PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, Version 2.75. http://mesquiteproject.org

  • Madin LP, Deibel D (1998) Feeding and energetics of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 81–104

    Google Scholar 

  • Madin LP, Cetta CM, McAlister VL (1981) Elemental and biochemical composition of salps (Tunicata: Thaliacea). Mar Biol 63:217–226

    CAS  Google Scholar 

  • Martin LE (1999) The population biology and ecology of Aurelia sp. (Scyphozoa: Semaeostomeae) in a tropical meromictic marine lake in Palau, Micronesia. Ph.D. thesis, University of California, Los Angeles

    Google Scholar 

  • Martindale MQ (1987) Larval reproduction in the ctenophore Mnemiopsis mccradyi (order Lobata). Mar Biol 94:409–414

    Google Scholar 

  • Miller JE, Pawson DL (1990) Swimming sea cucumbers (Echinodermata: Holothuroidea): a survey, with analysis of swimming behavior in four bathyal species. Smithson Contrib Mar Sci 35:1–18

    Google Scholar 

  • Miller RL, Harbison GR, Hilfer SR (2000) Evidence of dioecy in the mesopelagic ctenophore Bathocyroe fosteri (Lobata Ctenophora). Invert Reprod Dev 37(2):171–183

    Google Scholar 

  • Mills CE (1993) Natural mortality in NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bull Mar Sci 53:194–203

    Google Scholar 

  • Mills CE (1995) Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES J Mar Sci 52:575–581

    Google Scholar 

  • Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68

    Google Scholar 

  • Miranda LS, Morandini AC, Marques AC (2012) Do Staurozoa bloom? A review of stauromedusan population biology. Hydrobiologia 690:57–67

    Google Scholar 

  • Miyake H, Terazaki M, Kakinuma Y (2002) On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. J Oceanogr 58:451–459

    Google Scholar 

  • Møller LF, Riisgård HU (2007) Feeding, bioenergetics and growth in the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Mar Ecol Prog Ser 346:167–177

    Google Scholar 

  • Møller LF, Canon JM, Tiselius P (2010) Bioenergetics and growth in the ctenophore Pleurobrachia pileus. Hydrobiologia 645:167–178

    Google Scholar 

  • Ottersen G, Loeng H (2000) Covariability in early growth and year-class strength of Barents Sea cod, haddock, and herring: the environmental link. ICES J Mar Sci 57:339–348

    Google Scholar 

  • Paffenhöfer G-A, Gibson DM (1999) Determination of generation time and asexual fecundity of doliolids (Tunicata, Thaliacea). J Plankton Res 21:1183–1189

    Google Scholar 

  • Paffenhöfer G-A, Köster M (2011) From one to many: on the life cycle of Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 33:1139–1145

    Google Scholar 

  • Pagès F, González HE, Ramón M, Sobarzo M, Gili JM (2001) Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System, and potential predatory impact by Bassia bassensis (Siphonophora: Calycophorae). Mar Ecol Prog Ser 210:13–24

    Google Scholar 

  • Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297

    Google Scholar 

  • Pianka HD (1974) Ctenophora. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates, vol I, Acoelomate and pseudocoelomate metazoans. Academic Press, New York/London, pp 201–265

    Google Scholar 

  • Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, Purcell JE, Robinson KL, Uye S-I (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS One 8(8):e72683

    Google Scholar 

  • Pitt KA, Kingsford MJ (2003) Temporal and spatial variation in recruitment and growth of medusae of the jellyfish, Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Freshwat Res 54:117–125

    Google Scholar 

  • Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorous cycling and plankton production. Hydrobiologia 616:133–149

    CAS  Google Scholar 

  • Podar M, Haddock SHD, Sogin ML, Harbison GR (2001) A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol Phylogenet Evol 21:218–230

    CAS  PubMed  Google Scholar 

  • Prieto L, Astorga D, Navarro G, Ruiz J (2010) Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS One 5(11):e13793

    PubMed  Google Scholar 

  • Purcell JE (1997) Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates and effects on prey populations. Ann l’Instit Oceanogr Paris 73:125–137

    Google Scholar 

  • Purcell JE (2003) Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Mar Ecol Prog Ser 246:137–152

    Google Scholar 

  • Purcell JE (2005) Climate effects on formation of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc UK 85:461–476

    Google Scholar 

  • Purcell JE (2007) Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Mar Ecol Prog Ser 348:183–196

    Google Scholar 

  • Purcell JE (2009) Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia 616:23–50

    Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44

    Google Scholar 

  • Purcell JE, Madin LP (1991) Diel patterns of migration, feeding and spawning by salps in the subarctic Pacific. Mar Ecol Prog Ser 73:211–217

    Google Scholar 

  • Purcell JE, Breitburg DL, Decker MB, Graham WM, Youngbluth MJ, Raskoff KA (2001a) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems, coastal and estuarine studies. American Geophysical Union, Washington, DC, pp 77–100

    Google Scholar 

  • Purcell JE, Shiganova TA, Decker MB, Houde ED (2001b) The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451:145–176

    Google Scholar 

  • Purcell JE, Graham WM, Dumont HJ (eds) (2001c) Jellyfish blooms: ecological and societal importance. In: Proceedings of the international conference on jellyfish blooms, Gulf Shores, 12–14 Jan 2000. Hydrobiologia 451

    Google Scholar 

  • Purcell JE, Atienza D, Fuentes V, Olariaga A, Tilves U, Colahan C, Gili J-M (2012) Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690:169–180

    CAS  Google Scholar 

  • Ramirez-Llodra E (2002) Fecundity and life-history strategies in marine invertebrates. Adv Mar Biol 43:87–170

    PubMed  Google Scholar 

  • Raskoff KA, Sommer FA, Hamner WH, Cross KM (2003) Collection and culture techniques for gelatinous zooplankton. Biol Bull 204:68–80

    PubMed  Google Scholar 

  • Rauschert E (2010) Survivorship Curves. Nat Educ Knowl 3:18

    Google Scholar 

  • Reeve MR, Walter MA (1978) Nutritional ecology of ctenophores – a review of recent research. Adv Mar Biol 15:249–287

    Google Scholar 

  • Reeve MR, Syms MA, Kremer P (1989) Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. I. Carbon biomass, feeding, egg production, growth and assimilation efficiency. J Plankton Res 11:535–552

    Google Scholar 

  • Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24:312–322

    PubMed  Google Scholar 

  • Roughgarden J (2009) Is there a general theory of community ecology? Biol Philos 24:521–529

    Google Scholar 

  • Rutherford LD, Thuesen EV (2005) Metabolic performance and survival of medusae in estuarine hypoxia. Mar Ecol Prog Ser 294:189–200

    Google Scholar 

  • Schiariti A, Kawahara S, Uye S-I, Mianzan HW (2008) Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae). Mar Biol 156:1–12

    Google Scholar 

  • Schneider G (1992) A comparison of carbon-specific respiration rates in gelatinous and non-gelatinous zooplankton – a search for general rules in zooplankton. Helgol Meeresunters 46:377–388

    Google Scholar 

  • Sen Gupta BK, Machain-Castillo ML (1993) Benthic foraminifera in oxygen-poor habitats. Mar Micropaleont 20:183–201

    Google Scholar 

  • Shine R (1988) The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. Am Nat 131:124–131

    Google Scholar 

  • Smayda T (1997) Harmful algal blooms: their ecophysiology and general relevance to blooms in the sea. Limnol Oceanogr 42:1137–1153

    Google Scholar 

  • Sørnes TA, Aksnes DL (2004) Predation efficiency in visual and tactile zooplanktivores. Limnol Oceanogr 49:69–75

    Google Scholar 

  • Stearns SC (2000) Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87:476–486

    CAS  PubMed  Google Scholar 

  • Stenseth NC, MysterudA OG, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    CAS  PubMed  Google Scholar 

  • Strathmann RR (1990) Why life histories evolve differently in the sea. Am Zool 30:197–207

    Google Scholar 

  • Sutherland KR, Madin LP (2010) A comparison of filtration rates among pelagic tunicates using kinematic measurements. Mar Biol 157:755–764

    Google Scholar 

  • Sutherland KR, Madin LP, Stocker R (2010) Filtration of submicrometer particles by pelagic tunicates. Proc Natl Acad Sci U S A 107:15129–15134

    CAS  PubMed  Google Scholar 

  • Thein H, Ikeda H, Uye S-I (2012) The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia 690:157–167

    CAS  Google Scholar 

  • Thuesen EV, Rutherford LD, Brommer PL, Garrison K, Gutowska MA, Towanda T (2005a) Intragel oxygen promotes hypoxia tolerance of scyphomedusae. J Exp Biol 208:2475–2482

    PubMed  Google Scholar 

  • Thuesen EV, Rutherford LD, Brommer PL (2005b) The role of aerobic metabolism and intragel oxygen in hypoxia tolerance of three ctenophores: Pleurobrachia bachei, Bolinopsis infundibulum and Mnemiopsis leidyi. J Mar Biol Assoc UK 85:627–633

    Google Scholar 

  • Titelman J, Hansson LJ (2006) Feeding rates of the jellyfish Aurelia aurita on fish larvae. Mar Biol 149:297–306

    Google Scholar 

  • Tomlinson J (1966) The advantages of hermaphroditism and parthenogenesis. J Theoret Biol 11:54–58

    CAS  Google Scholar 

  • Troedsson C, Bouquet J-M, Aksnes DL, Thompson EM (2002) Resource allocation between somatic growth and reproductive output in the pelagic chordate Oikopleura dioica allows opportunistic response to nutritional variation. Mar Ecol Prog Ser 243:83–91

    Google Scholar 

  • Tsuda A, Nemoto T (1992) Distribution and growth of salps in a Kuroshio warm-core ring during summer 1982. Deep-Sea Res 39(Suppl 1):S219–S229

    Google Scholar 

  • Underwood AJ, Keough MJ (2001) Supply-side ecology: the nature and consequences of variations in recruitment of intertidal organisms. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, pp 183–200

    Google Scholar 

  • Urban MC (2008) Ecological genetics. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0021214

    Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–244

    Google Scholar 

  • Valiella I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Google Scholar 

  • Vargas CA, Madin LP (2004) Zooplankton feeding ecology: clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight. J Plankton Res 26:827–833

    CAS  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206

    PubMed  Google Scholar 

  • Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781

    Google Scholar 

  • Verity PG, Purcell JE, Frischer ME (2011) Seasonal patterns in size and abundance of Phyllorhiza punctata: an invasive scyphomedusa in coastal Georgia (USA). Mar Biol 158:2219–2226

    Google Scholar 

  • Vinogradof AP (1953) The elementary chemical composition of marine organisms. Yale University Press, New Haven

    Google Scholar 

  • Wrobel D, Mills CE (1998) Pacific coast pelagic invertebrates, a guide to the common gelatinous animals. Sea Challengers and Monterey Bay Aquarium, Monterey

    Google Scholar 

  • Young GA, Hagadorn JW (2010) The fossil record of cnidarian medusa. Paleoworld 19:212–221

    Google Scholar 

  • Zavolokin AV (2010) Distribution and abundance dynamics of jellyfish in the Sea of Okhotsk. Russ J Mar Biol 36:157–166

    Google Scholar 

Download references

Acknowledgements

The metazoan phylogeny in Fig. 2.1 was kindly provided by, and is used with permission from, Gonzalo Giribet. MND’s research on this topic has been supported by US NSF grant DEB-0717078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy H. Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lucas, C.H., Dawson, M.N. (2014). What Are Jellyfishes and Thaliaceans and Why Do They Bloom?. In: Pitt, K., Lucas, C. (eds) Jellyfish Blooms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7015-7_2

Download citation

Publish with us

Policies and ethics