Skip to main content

Quantitative Ultrasound History and Successes

  • Chapter
  • First Online:
Quantitative Ultrasound in Soft Tissues

Abstract

Ultrasound has been used for imaging and diagnostics for more than 50 years. During that time, the number of medical applications for ultrasonic imaging has increased dramatically. These increases in applicability have come with improved device technology, improved understanding of ultrasound interaction with tissues, and improved processing techniques. Over the past three decades, quantitative ultrasound (QUS) techniques have been explored to further improve medical diagnostics and monitor/assess therapeutic responses. The acceptance of QUS techniques has been slower in common medical practice than conventional ultrasonic imaging techniques like B-mode or Doppler. This is due mainly to a lack of technological capabilities to make use of these unique and beneficial imaging modes. However, with modern ultrasonic imaging devices, QUS techniques have found a new acceptance and are poised to make significant contributions to diagnostic medicine. In this chapter, we will examine the history of QUS techniques and their evolution over time along with significant contributions and successes that have been demonstrated over the years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JJ, Herd MT, King MR, Haak A, Hafez ZT, Song J, Oelze ML, Madsen EL, Zagzebski JA, O’Brien WD Jr, Hall TJ (2010) Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms. Ultrason Imaging 32(1):48–64

    Article  PubMed  Google Scholar 

  • Balaji KC, Fair WR, Feleppa EJ, Porter CR, Tsai H, Liu T, Kalisz A, Urban S, Gillespie J (2002) Role of advanced 2 and 3-dimensional ultrasound for detecting prostate cancer. J Urol 168(6):2422–2425

    Article  PubMed  CAS  Google Scholar 

  • Bamber JC, Hill CR (1981) Acoustic properties of normal and cancerous human liver-I. dependence on pathological condiction. Ultrasound Med Biol 7:121–133

    Article  PubMed  CAS  Google Scholar 

  • Bamber JC, Hill CR, King JA (1981) Acoustic properties of normal and cancerous human liver - II dependence on tissue structure. Ultrasound Med Biol 7:135–144

    Article  PubMed  CAS  Google Scholar 

  • Banihashemi B, Vlad R, Debeljevic B, Giles A, Kolios MC, Czarnota GJ (2008) Ultrasound imaging of apoptosis in tumor response: Novel preclinical monitoring of photodynamic therapy effects. Cancer Res 68:8590–8596

    Article  PubMed  CAS  Google Scholar 

  • Baum G, Greenwood I (1958a) The application of ultrasonic locating techniques to ophthalmology. Arch Ophthalmol 60(2):263–279

    Article  CAS  Google Scholar 

  • Baum G, Greenwood I (1958b) The application of ultrasonic locating techniques to ophthalmology: theoretical considerations and acoustic properties of ocular media. (i) reflective properties. Am J Ophthalmol 46:319–329

    CAS  Google Scholar 

  • Bom N (1973) A multi-element system and its application to cardiology. Excerpta Medica 227(2)

    Google Scholar 

  • Bom N, Lancée CT, van Zwieten G, Kloster FE, Roelandt J (1973) Multiscan echocardiography. i. technical description. Circulation 48:1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Carpenter DA, Kossoff G (1977) The u. i. octoscan - a new class of ultrasonic echoscopes. In: White D, Brown RE (eds) Ultrasound in medicine, vol 3B, pp 1785–1786

    Google Scholar 

  • Carson PL, Meyer CR, Scherzinger AL, Oughton TV (1981) Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound. Science 214(4):1141–1143

    Article  PubMed  CAS  Google Scholar 

  • Carstensen EL, Schwan HP (1959) Absorption of sound arising from the presence of intact cells in blood. J Acoust Soc Am 31(2):185–189

    Article  Google Scholar 

  • Carstensen EL, Li K, Schwan HP (1953) Determination of the acoustic properties of blood and its components. J Acoust Soc Am 25(2):286–289

    Article  Google Scholar 

  • Chen DR, Chang RF, Huang YL (1999) Computer-aided diagnosis applied to us of solid breast nodules by using neural networks. Radiology 213(2):407–412

    PubMed  CAS  Google Scholar 

  • Chen JF (1994) Statistical parameter estimation in ultrasound backscattering from tissue mimicking media. PhD thesis, University of Wisconsin

    Google Scholar 

  • Chivers RC, Parry RJ (1978) Ultrasonic velocity and attenuation in mammalian tissues. J Acoust Soc Am 63(3):940–953

    Article  PubMed  CAS  Google Scholar 

  • Coleman DJ, Lizzi FL (1983) Computerized ultrasonic tissue characterization of ocular tumors. Am J Ophthalmol 96(2):165–175

    PubMed  CAS  Google Scholar 

  • Coleman DJ, Rondeau M, Silverman R, Lizzi F (1987) Computerized ultrasonic biometry and imaging of intraocular tumors for monitoring of therapy. Trans Am Opthalmol Soc 85:48–81

    Google Scholar 

  • Coleman DJ, Silverman RH, Rondeau MJ, Lizzi FL, McLean JW, Jakobiec FA (1990) Correlations of acoustic tissue typing of malignant melanoma and histopathologic features as a predictor of death. Am J Ophthalmol 110(4):380–388

    PubMed  CAS  Google Scholar 

  • Coleman DJ, Silverman RH, Rondeau MJ, Coleman JA, Rosberger D, Ellsworth RM, Lizzi FL (1991) Ultrasonic tissue characterization of uveal melanoma and prediction of patient survival after enucleation and brachytherapy. Am J Ophthalmol 112(6):682–688

    PubMed  CAS  Google Scholar 

  • Coleman DJ, Silverman RH, Rondeau MJ, Boldt HC, Lloyd HO, Lizzi FL, Weingeist TA, Chen X, Vangveeravong S, Folberg R (2004) Noninvasive in vivo detection of prognostic indicators for high-risk uveal melanoma: Ultrasound parameter imaging. Ophthalmology 111(3):558–564

    Article  PubMed  Google Scholar 

  • Czarnota GJ, Kolios MC, Abraham J, Portnoy M, Ottensmeyer FP, Hunt JW, Sherar MD (1999) Ultrasonic imaging of apoptosis: high-resolution non-invasive imaging of programmed cell death in vitro, in situ and in vivo. British J Cancer 81:520–527

    Article  CAS  Google Scholar 

  • D’Astous FT, Foster FS (1986) Frequency dependence of ultrasound attenuation and backscatter in breast tissue. Ultrasound Med Biol 12(10):795–808

    Article  PubMed  Google Scholar 

  • Dines KA, Kak AC (1979) Ultrasonic attenuation tomography of soft tissue. Ultrason Imaging 1:16–33

    PubMed  CAS  Google Scholar 

  • Donald I (1964) Ultrasonography in two dimensions. Med Biol Illustr 14:216–224

    CAS  Google Scholar 

  • Donald I (1974) Sonar - the story of an experiment. Ultrasound Med Biol 1:109–117

    Article  PubMed  CAS  Google Scholar 

  • Donald I, Brown TG (1961) Demonstration of tissue interfaces within the body by ultrasonic echo sounding. Brit J Radiol 34:539–545

    Article  PubMed  CAS  Google Scholar 

  • Dumane VA, Shankar PM (2001) Use of frequency diversity and nakagami statistics in ultrasonic tissue characterization. IEEE Trans Ultrason Ferroelectr Freq Contr 48(4):1139–1146

    Article  CAS  Google Scholar 

  • Dunn F, O’Brien WD Jr (1978) Ultrasonic absorption and dispersion. In: Fry FJ (ed) Ultrasound: Its application in medicince and biology. Elsevier, Amsterdam, pp 393–439

    Google Scholar 

  • Duric N, Littrup P, Babkin A, Chambers D, Azevedo S, Kalinin A, Pevzner R, Tokarev M, Holsapple E, Rama O, Duncan R (2005) Development of ultrasound tomography for breast imaging: Technical assessment. Med Phys 32(5):1375–1386

    Article  PubMed  Google Scholar 

  • Duric N, Littrup P, Holsapple E, Rama O, Glide C (2007) Detection of breast cancer with ultrasound tomography: First results with the computed ultrasound risk evaluation (cure) prototype. Med Phys 34(2):773–785

    Article  PubMed  Google Scholar 

  • Dussik KT (1942) Uber die moglichkeit hochfrequente mechanische schwingungen als diagnostisches hilfsmittel zu verwerten (about the possibility of using ultrasound as a diagnostic aid). Z Neurol Psychiat 174:153–168

    Article  Google Scholar 

  • Dussik KT (1948) Ultraschall diagnostik, in besondere bei gehirnerkrankungen, mittels hyperphongraphie (ultrasound diagnostics, in particular of brain diseases, by using hyperphonography). Z Phys Med 1:140–145

    CAS  Google Scholar 

  • Dussik KT (1949) Zum heutigen stand der medizinischen ultraschallforschung (state of the art of medical ultrasound research). Wien Klin Wochenschr 61:246–248

    PubMed  CAS  Google Scholar 

  • Dussik KT, Dussik F, Wyt L (1947) Auf dem wege zur hyperphonographie des gehirnes (en route to hyperphonography of the brain). Wien Med Wochenschr 97:425–429

    PubMed  CAS  Google Scholar 

  • Dutt V, Greenleaf JF (1995) K distribution model of ultrasound speckle: fractional order SNRs and log compression variance. In: Proceeding of the IEEE Ultrasonic Symposium, vol 2, pp 1375–1378

    Google Scholar 

  • Egelstaff PA, Gray CG, Gubbins KE, Mo KC (1975) Theory of inelastic neutron scattering from molecular fluids. J Stat Phys 13:315–330

    Article  Google Scholar 

  • Elder I, Gustafson A (1957) Ultrasonic cardiogram in mitral stenosis. Acta Med Scand 154:85–90

    Google Scholar 

  • Elder I, Hertz CH (1954) The use of the ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Kungl Fysiograf Sällsk Lund Förhandl 24:5

    Google Scholar 

  • Faran JJ Jr (1951) Sound scattering by solid cylinders and spheres. J Accoust Soc Am 23:405–418

    Article  Google Scholar 

  • Fei DY, Shung KK (1985) Ultrasonic backscatter from mammalian tissues. J Accoust Soc Am 78:871–876

    Article  CAS  Google Scholar 

  • Feleppa EJ, Lizzi FL, Coleman DJ, Yaremko MM (1986) Diagnostic spectrum analysis in opthalmology: A physical perpestive. Ultrasound Med Biol 12:623–631

    Article  PubMed  CAS  Google Scholar 

  • Feleppa EJ, Kalisz A, Sokil-Melgar JB, Lizzi FL, Liu T, Rosado AL, Shao MC, Fair WR, Wang Y, Cookson MS, Reuter VE, Heston WDW (1996) Typing of prostate tissue by ultrasonic spectrum analysis. IEEE Trans Ultrason Ferroelectr Freq Contr 43(4):609–619

    Article  Google Scholar 

  • Feleppa EJ, Liu T, Shao MC, Fleshner N, Reuter V, Fair WR (1997) Ultrasonic spectral-parameter imaging of the prostrate. Int J Imaging Syst Technol 8:11–25

    Article  Google Scholar 

  • Fields S, Dunn F (1973) Correlation of echographic visualizability of tissue with biological composition and physiological state. J Acoust Soc Am 54:809–812

    Article  PubMed  CAS  Google Scholar 

  • Filipczynski L, Etienne J, Lypacewicz G (1966) Visualizing the inside of the abdomen by means of ultrasound. Proc Vibr Probl 7:211–220

    Google Scholar 

  • Firestone FA (1942) Flaw detecting device and measuring instrument. US Patent 2(280):226

    Google Scholar 

  • Firestone FA (1945) The supersonic reflectoscope for interior inspection. Metal Progress 48:505–512

    CAS  Google Scholar 

  • Firestone FA (1946) The supersonic reflectoscope, an instrument of inspecting the interior of solid parts by means of sound waves. J Acoust Soc Am 17:287–299

    Article  Google Scholar 

  • Firestone FA, Frederick JR (1946) Refinements in supersonic reflectoscopy. polarized sound. J Acoust Soc Am 18:200–211

    Article  Google Scholar 

  • French LA, Wild JJ, Neal D (1950) Detection of cerebral tumors by ultrasonic pulses. pilot studies on postmortem material. Cancer 3(4):705–708

    Article  PubMed  CAS  Google Scholar 

  • Fry WJ, Leichner GH, Okuyama D, Fry FJ, Fry EK (1968) Ultrasonic visualization system employing new scanning and presentation methods. J Acoust Soc Am 44:1324–1338

    Article  PubMed  CAS  Google Scholar 

  • Gaitini D, Baruch Y, Ghersin E, Veitsman E, Kerner H, Shalem B, Yaniv G, Sarfaty C, Azhari H (2004) Feasibility study of ultrasonic fatty liver biopsy: texture vs. attenuation and backscatter. Ultrasound Med Biol 30:1321–1327

    Article  PubMed  Google Scholar 

  • Garra BS, Krasner BH, Horii SC, Ascher S, Mun SK, Zeman RK (1993) Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis. Ultrason Imaging 15(4):267–285

    PubMed  CAS  Google Scholar 

  • Garra BS, Insana MF, Sesterhenn IA, Hall TJ, Wagner RF, Rotellar C, Winchester J, Zeman RK (1994) Quantitative ultrasonic detection of parenchymal structural change in diffuse renal disease. Invest Radiol 29(2):134–140

    Article  PubMed  CAS  Google Scholar 

  • Gefen S, Tretiak OJ, Piccoli CW, Donohue KD, Petropulu AP, Shankar PM, Dumane VA, Huang LX, Kutay MA, Genis V, Forsberg F, Reid JM, Goldberg BB (2003) Roc analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis. IEEE Trans Medical Imaging 22(2):170–177

    Article  Google Scholar 

  • Glover GH (1977) Computerized time-of-flightultrasonic tomography for breast examination. Ultrasound Med Biol 3:117–127

    Article  PubMed  CAS  Google Scholar 

  • Gohr H, Wedekind T (1940) Der ultraschall in der medizin. Wien Klin Wochenschr 19:25–29

    Article  Google Scholar 

  • Goldman DE, Hueter TF (1956) Tabular data of the velocity and absorption of high-frequency sound in mammalian tissues. J Acoust Soc Am 28:35–37

    Article  Google Scholar 

  • Golub RM, Parsons RE, Sigel B, Feleppa EJ, Justin J, Zaren HA, Rorke M, Sokilmelgar J, Kimitsuki H (1993) Differentiation of breast-tumors by ultrasonic tissue characterization. J Ultrasound Med 12(10):601–608

    PubMed  CAS  Google Scholar 

  • Gordon D (1958) Echo-encèphalographie. Rev Neurol 99:652

    PubMed  CAS  Google Scholar 

  • Goss SA (1978) The role of collagen in the ultrasonic properties of tissues. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

    Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissue. J Acoust Soc Am 64:423–457

    Article  PubMed  CAS  Google Scholar 

  • Goss SA, Frizzell LA, Dunn F (1980a) Dependence of the ultrasonic properties of biological tissue on constituent proteins. J Acoust Soc Am 67(3):1041–1044

    Article  CAS  Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1980b) Compilation of empirical ultrasonic properties of mammalian tissues ii. J Acoust Soc Am 68:93–108

    Article  CAS  Google Scholar 

  • Greenleaf JF, Bahn RC (1981) Clinical imaging with transmissive ultrasonic computerized tomography. IEEE Trans Biomed Eng 28(2):177–185

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf JF, Johnson SA, Lee SL, Herman GT, Wood EH (1974) Algebric reconstraution of spatial distribution of acoustic absorption within tissue from their two dimensional acoustic projections. Acoust Holography 5:591–603

    Article  Google Scholar 

  • Greenleaf JF, Johnson SA, Samayoa WF, Duck FA (1975) Algebric reconstruction of spatial distribution of acoustical velocities in tissue from their time-of-flight profiles. Acoust Holography 6:71–90

    Article  Google Scholar 

  • Greenleaf JF, Johnson SA, Bahn RC, Samayoa WF, Hansen CR (1976) Images of acoustic refractive index and on attenuation: relationships to tissue types within excised female breast. First World Federation of Ultrasound in Medicine and Biology, San Francisco

    Google Scholar 

  • Griffith JM, Henry WL (1974) A sector scanner for real time two-dimensional echocardiography. Circulation 49:1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Guimond A, Teletin M, Garo E, D’Sa A, Selloum M, Champy MF, Vonesch JL, Monassier L (2007) Quantitative ultrasonic tissue characterization as a new tool for continuous monitoring of chronic liver remodeling in mice. Liver Int 27:854–864

    Article  PubMed  Google Scholar 

  • Hall CS, Scott MJ, Lanza GM, Miller JG, Wickline SA (2000) The extracellular matrix is an important source of ultrasound backscatter from myocardium. J Acoust Soc Am 107(1):612–619

    Article  PubMed  CAS  Google Scholar 

  • Hall TJ, Insana MF, Harrison LA, Cox GG (1996) Ultrasonic measurement of glomerular diameters in normal adult humans. Ultrasound Med Biol 22(8):987–997

    Article  PubMed  CAS  Google Scholar 

  • Hammes GG, Roberts PB (1970) Ultrasonic attenuation measurements in phospholipid dispersion. Biochim Biophys Acta 203:220–227

    Article  PubMed  CAS  Google Scholar 

  • Han A, Abuhabsah R, Blue JP Jr, Sarwate S, O’Brien WD Jr (2011) Ultrasonic backscatter coefficient quantitative estimates from high-concentration chinese hamster ovary cell pellet biophantoms. J Acoust Soc Am 130(6):4139–4147

    Article  PubMed  Google Scholar 

  • Hayashi S, Wagai T, Miyazawa R, Ito K, Ishikawa S, Uomatsu K, Kikuchi Y, Uchida R (1962) Ultrasonic diagnosis of breast tumor and cholelithiasis. Western J Surg Obstet Gynec 70:34–40

    CAS  Google Scholar 

  • Holmes JH, Wright W, Meyer EP, Posakony GJ, Howry DH (1965) Ultrasonic contact scanner for diagnostic application. Am J Med Electron 4(4):147–152

    PubMed  CAS  Google Scholar 

  • Howry DH (1952) The ultrasonic visualization of soft tissue structures and disease processes. J Lab Clin Med 40:812–813

    Google Scholar 

  • Howry DH, Bliss WR (1952) Ultrasonic visualization of soft tissue structures of the body. J Lab Clin Med 40:579–592

    PubMed  CAS  Google Scholar 

  • Huang L, Donohue KD, Genis V, Forsberg F (2000) Duct detection and wall spacing estimation in breast tissue. Ultrason Imag 22(3):137–152

    Article  CAS  Google Scholar 

  • Hueter TF (1948) Messung der ultraschallaborption in tierischen geweben und ihre abhangigkeit von der frequenz (measurement of ultrasonic absorption in animal tissues and its dependence on frequency). Naturwiss 35:285–287, [English translation in Ultrasonic Biophysics, Dunn F, O’Brien W. D. Jr (eds) (1976) Benchmark Papers in Acoustics, vol 7 (Dowden, Hutchinson and Ross, Stroudsburg, PA)].

    Google Scholar 

  • Hunt FV (1978) Origins of Acoustics. Yale University Press, New Haven

    Google Scholar 

  • Insana MF (1995) Modeling acoustic backscatter from kidney microstructure using an anisotropic correlation function. J Acoust Soc Am 97:649–655

    Article  PubMed  CAS  Google Scholar 

  • Insana MF, Brown DG (1993) Acoustic scattering theory applied to soft biological tissues. In: Shung KK, Thieme GA (eds) Ultrasonic Scattering in Biological Tissues. CRC Press, Boca Raton, pp 75–124

    Google Scholar 

  • Insana MF, Hall TJ (1990) Parametric ultrasound imaging from backscatter coefficient measurements: Image formation and interpretation. Ultrason Imaging 12:245–267

    PubMed  CAS  Google Scholar 

  • Insana MF, Hall TJ, Fishback JL (1991) Identifying acoustic scattering sources in normal renal parenchyma from the anisotropy in acoustic properties. Ultrasound Med Biol 17(6):613–626

    Article  PubMed  CAS  Google Scholar 

  • Insana MF, Wood JG, Hall TJ (1992) Identifying acoustic scattering sources in normal renal parenchyma in vivo by varying arterial and ureteral pressures. Ultrasound Med Biol 18:587–599

    Article  PubMed  CAS  Google Scholar 

  • Insana MF, Hall TJ, Wood JG, Yan ZY (1993) Renal ultrasound using parametric imaging techniques to detect changes in micrstructure and function. Invest Radiol 28:720–725

    Article  PubMed  CAS  Google Scholar 

  • Insana MF, Wood JG, Hall TJ, Cox GG, Harrison LA (1995) Effects of endothelin-1 on renal microvasculature measured using quantitative ultrasound. Ultrasound Med Biol 21(9):1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Jeong JW, Kim TS, Shin DC, Do S, Singh M, Marmarelis VZ (2005) Soft tissue differentiation using multiband signatures of high resolution ultrasonic transmission tomography. IEEE Trans Medical Imaging 24(3):399–408

    Article  Google Scholar 

  • Johnson SA, Abbott T, Bell R, Berggren M, Borup D, Robinson D, Wiskin J, Olsen S, Hanover B (2007) Non-invasive breast tissue characterization using ultrasound speed and attenuation. Acoust imaging 28:147–154

    Article  Google Scholar 

  • King MR, Anderson JJ, Herd M, Ma D, Haak A, Wirtzfeld LA, Madsen EL, Zagzebski JA, Oelze ML, Hall TJ, O'Brien WD Jr (2010) Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms. J Acoust Soc Am 128:903–908

    Article  PubMed  Google Scholar 

  • Kolios MC, Czarnota GJ, Lee L, Hunt JW, Sherar MD (2002) Ultrasonic spectral parameter imaging of apoptosis. Ultrasound Med Biol 28:589–597

    Article  PubMed  CAS  Google Scholar 

  • Kossoff G, Garrett WJ (1972) Ultrasonic film echoscopy for placental localization. Aust N Zeal J Obstet Gynaecol 12(2):117–121

    Article  CAS  Google Scholar 

  • Kossoff G, Fry EK, Jellins J (1973) Average velocity of ultrasound in the human female breast. J Acoust Soc Am 53:1730–1736

    Article  PubMed  CAS  Google Scholar 

  • Kossoff G, Garrett WJ, Radovanovich G (1974) Grey scale echography in obstetrics and gynecology. Australian Radiol 18(1):63–111

    Article  Google Scholar 

  • Kremkau FW, Cowgill RW (1984) Biomolecular absorption of ultrasound: I. molecular weight. J Acoust Soc Am 76(5):1330–1335

    Article  PubMed  CAS  Google Scholar 

  • Kremkau FW, Cowgill RW (1985) Biomolecular absorption of ultrasound: Ii. molecular structure. J Acoust Soc Am 77(3):1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Kremkau FW, Carstensen EL, Aldridge WG (1973) Macromolecular interaction in the absorption of ultrasound in fixed erthrocytes. J Acoust Soc Am 53(5):1448–1451

    Article  PubMed  CAS  Google Scholar 

  • Landini L, Santarelli MF (1995) A regression-model of ultrasound reflectivity from normal myocardium. Med Eng Phys 17(2):141–144

    Article  PubMed  CAS  Google Scholar 

  • Landini L, Sarnelli R, Salvadori M, Squartini F (1987) Orientation and frequency-dependence of backscatter coefficient in normal and pathological breast tissues. Ultrasound Med Biol 13(2):77–83

    Article  PubMed  CAS  Google Scholar 

  • Leksell L (1955) Echo-encephalography: detection of intracranial complications following head injury. Acta Chir Scand 110:301

    Google Scholar 

  • Li C, Duric N, Huang L (2008) Breast imaging under transmission ultrasound: Reconstructing tissue parameters of sound speed and attenuation. In: 2008 International Conference on BioMedical Engineering and Informatics, pp 708–712

    Google Scholar 

  • Lindsey RB (1966) The story of acoustics. J Acoust Soc Am 39:629–644

    Article  Google Scholar 

  • Lizzi FL, Greenabaum M, Feleppa EJ, Elbaum M, Coleman DJ (1983) Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J Accoust Soc Am 73:1366–1373

    Article  CAS  Google Scholar 

  • Lizzi FL, Ostromogilsky M, Feleppa EJ, Rorke MC, Yaremko MM (1987) Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans Ultrason Ferroelectr Freq Contr 34:319–329

    Article  CAS  Google Scholar 

  • Lizzi FL, Astor M, Liu T, Deng C, Coleman DJ, Silverman RH (1997) Ultrasonic spectrum analysis for tissue assays and therapy evaluation. Int J Imaging Syst Technol 8:3–10

    Article  Google Scholar 

  • Lu ZF, Zagzebski JA, Lee FT (1999) Ultrasound backscatter and attenuation in human liver with diffuse disease. Ultrasound Med Biol 25(7):1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Ludwig GD (1950) The velocity of sound through tissues and the acoustic impedance of tissues. J Acoust Soc Am 22:862–866

    Article  Google Scholar 

  • Ludwig GD, Struthers FW (1950) Detecting gallstones with ultrasonic echoes. Electronics 23:172–178

    Google Scholar 

  • Madsen EL, Dong F, Frank GR, Gara BS, Wear KA, Wilson T, Zagzebski JA, Miller HL, Shung KK, Wang SH, Feleppa EJ, Liu T, O’Brien WD Jr, Topp KA, Sanghvi NT, Zaitsen AV, Hall TJ, Fowlkes JB, Kripfgans OD, Miller JG (1999) Interlaboratory comparison of ultrasonic backscatter, attenuation and speed measurements. J Ultrasound Med 18:615–631

    PubMed  CAS  Google Scholar 

  • Mamou J, Coron A, Oelze ML, Saegusa-Beecroft E, Hata M, Lee P, Machi J, Yanagihara E, Laugier P, Feleppa EJ (2011) Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes. Ultrasound Med Biol 37:345–357

    Article  PubMed  Google Scholar 

  • Miller JG, Perez JE, Mottley JG, Madaras EI, Johnston PH, Blodgett ED, Thomas LJ III, Sobel BE (1983) Myocardial tissue characterization: an approach based on quantitative backscatter and attenuation. Ultrason Symp Proc 2:782–793

    Google Scholar 

  • Mimbs JW, Yuhas DE, Miller JG, Weiss AN, Sobel BE (1977) Detection of myocardial infarction in vitro based on altered attenuation of ultrasound. Cir Res 41:192–198

    Article  CAS  Google Scholar 

  • Miyazaki Y (1974) Light scattering of laser beams by random micro-inhomogeneities in glasses and polymers. Japanese J Appl Phys 13:1238–1248

    Article  Google Scholar 

  • Mortensen CL, Edmonds PD, Gorfu Y, Hill JR, Jensen JF, Schattner P, Shifrin LA, Valdes AD, Jeffrey SS, Esserman LJ (1996) Ultrasound tissue characterization of breast biopsy specimens: expanded study. Ultrason Imaging 18(3):215–230

    PubMed  CAS  Google Scholar 

  • Mundt GH, Hughes WF (1956) Ultrasonics in ocular diagnosis. Am J Ophthalmol 41(3):488–498

    PubMed  Google Scholar 

  • Nam K, Rosado-Mendex IM, Wirtzfeld LA, Kumar V, Madsen EL, Ghoshal G, Pawlicki AD, Oelze ML, Lavarello RJ, Bigelow TA, Zagzebski JA, O’Brien WD Jr, Hall TJ (2012a) Cross-imaging system comparison of backscatter coefficients estimates from tissue-mimicking material. J Acoust Soc Am 132:1319

    Article  Google Scholar 

  • Nam K, Rosado-Mendex IM, Wirtzfeld LA, Pawlicki AD, Kumar V, Madsen EL, Ghoshal G, Lavarello RJ, Oelze ML, Bigelow TA, Zagzebski JA, O’Brien WD Jr, Hall TJ (2012b) Ultrasonic attenuation and backscatter coefficient estimates of rodent-tumor mimicking structures: comparison of results among clinical scanners. Ultrason Imaging 33:233–250

    Article  Google Scholar 

  • Newton I (1687) Philosophiae Naturalis Principia Mathematica. Royal Society London, Cambridge

    Google Scholar 

  • O’Brien WD Jr (1977a) The relationship between collagen and ultrasonic attenuation and velocity in tissue. In: Proceedings of the ultrasonics international ’77, IPC science and technology press Ltd., Guildford, England, pp 194–205

    Google Scholar 

  • O’Brien WD Jr (1977b) The role of collagen in determining ultrasonic propagation properties in tissue. Acoust Holography 7:37–50

    Google Scholar 

  • O’Brien WD Jr, Dunn F (1971) Ultrasonic examination of hemoglobin dissociation process in aqueous solutions of guanidine hydrochloride. J Acoust Soc Am 50:1213–1215

    Article  PubMed  Google Scholar 

  • O’Brien WD Jr, Dunn F (1972a) Ultrasonic absorption by biomacromolecules. In: Proceedings of the workshop on interaction of ultrasound and biological tissues, pp 15–19

    Google Scholar 

  • O’Brien WD Jr, Dunn F (1972b) Ultrasonic absorption mechanisms in aqueous solutions of bovine hemoglobin. J Phys Chem 76:528–533

    Article  PubMed  Google Scholar 

  • O’Brien WD Jr, Olerud J, Shung KK, Reid JM (1981) Quantitative acoustical assessment of wound maturation with acoustic microscopy. J Acoust Soc Am 69(2):575–579

    Article  PubMed  Google Scholar 

  • O’Brien WD Jr, Erdman JW Jr, Hebner TB (1988) Ultrasonic propagation properties (@100 mhz) in excessively fatty rat liver. J Acoust Soc Am 83(3):1159–1166

    Article  PubMed  Google Scholar 

  • O’Donnell M, Mimbs JW, Miller JG (1979) The relationship between collagen and ultrasonic attenuation in myocardial tissue. J Acoust Soc Am 65(2):512–517

    Article  PubMed  Google Scholar 

  • Oelze ML, O’Brien WD Jr (2004) Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging. IEEE Trans Med Imaging 23:764–771

    Article  PubMed  Google Scholar 

  • Olerud JE, O’Brien WD Jr, Riederer-Henderson MA, Steiger D, Forster FK, Daly C, Ketterer DJ, Odland GF (1987) Ultrasonic assessment of skin and wounds with the scanning laser acoustic microscope. J Invest Dermatol 88:615–623

    Article  PubMed  CAS  Google Scholar 

  • Pauly H, Schwan HP (1971) Mechanism of absorption of ultrasound in liver tissue. J Acoust Soc Am 50(2):692–699

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton JMM (1949) The absorption of ultrasonic waves in liquids and its relation to molecular constitutions. Proc Phys Soc B 62:129–141

    Article  Google Scholar 

  • Pohlhammer JD, O’Brien WD Jr (1980) The relationship between ultrasonic attenuation and speed in tissues and constituents: Water, collagen, protein and fat. In: Fullerton G, Zagzebski JA (eds) Medical physics of CT and ultrasound: tissue imaging and characterization. Medical Physics, New York, pp 409–435

    Google Scholar 

  • Pohlman R (1939) Uber die absorption des ultraschalls im menschlichen geweben und ihre abhangigkeit von der frequenz (on the absorption of ultrasound in human tissues and their dependence upon frequency). Physik 40:159–161

    Google Scholar 

  • von Ramm OT, Thurston FL (1972) Improved resolution in ultrasound tomography. In: Proc. 25th Annual Conf. Engr. Med. Biol., p 141

    Google Scholar 

  • Rayleigh L (1945) Theory of sound. Dover Publications, New York

    Google Scholar 

  • Recchia D, Hall CS, Shepard RK, Miller JG, Wickline SA (1995) Mechanisms of the view-dependence of ultrasonic backscatter from normal myocardium. IEEE Trans Ultrason Ferroelectr Freq Contr 42(1):91–98

    Article  Google Scholar 

  • Reid JM, Wild JJ (1957) Current developments in ultrasonic equipment for medical diagnosis. IRE Trans Ultrason Eng PGUE 5:44–58

    Article  Google Scholar 

  • Saijo Y, Tanaka M, Okawai H, Sasaki H, Nitta SI, Dunn F (1997) Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy. Ultrasound Med Biol 23(1):77–85

    Article  PubMed  CAS  Google Scholar 

  • Schwan HP (1959) Absorption of ultrasound by tissues and biological matter. Proc IRE 47(11):1959–1962

    Article  Google Scholar 

  • Shankar PM (2000) A general statistical model for ultrasonic backscattering from tissues. IEEE Trans Ultrason Ferroelectr Freq Contr 47(3):727–736

    Article  Google Scholar 

  • Silverman RH, amd BG, Ursea FLL, Rondeau MJ, Eldeen NB, Kaliscz A, Lloyd HO, Coleman DJ (2001) High-resolution ultrasonic imaging and characterization of the ciliary body. Invest Ophthalmol Visual Sci 42(5):885–894

    CAS  Google Scholar 

  • Silverman RH, Folberg R, Rondeau MJ, Boldt HC, Lloyd HO, Chen X, Lizzi FL, Weingeist TA, Coleman DJ (2003) Spectral parameter imaging for detection of prognostically significant histologic features in uveal melanoma. Ultrasound Med Biol 29(7):951–959

    Article  PubMed  Google Scholar 

  • Smith A, Schwan HP (1971) Acoustic properties of cell nuclei. J Acoust Soc Am 49:1329–1330

    Article  Google Scholar 

  • Somer JC (1968) Electronic sector scanning for ultrasonic diagnosis. Ultrasonics 6(3):153–159

    Article  PubMed  CAS  Google Scholar 

  • Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA (1995) Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196(1):123–134

    PubMed  CAS  Google Scholar 

  • Suzuki K, Hayashi N, Sasaki Y, Kono M, Kasahara A, Fusamoto H, Imai Y, Kamada T (1992) Dependence of ultrasonic attenuation of liver on pathologic fat and fibrosis: Examination with experimental fatty liver and liver fibrosis models. Ultrasound Med Biol 18(8):657–666

    Article  PubMed  CAS  Google Scholar 

  • Tamirisa PK, Holland MR, Miller JG, Perez JE (2001) Ultrasonic tissue characterization: Review of an approach to assess hypertrophic myocardium. Echocardiogr J Cardiovas Ultrasound Allied Tech 18(7):593–597

    Article  CAS  Google Scholar 

  • Tanaka K, Kikuchi S, Ito K, Ishii M, Katsumi S, Wagai T, Kikuchi Y, Uehida R (1960) Ultrasonic diagnosis of intracranial disease. J Jpn Surg Soc 61:761

    Google Scholar 

  • Teisseire M, Han A, Abuhabsah R, Blue JP Jr, Sarwate S, O’Brien WD Jr (2010) Ultrasonic backscatter coefficient quantitative estimates from chinese hamster ovary cell pellet biophantoms. J Acoust Soc Am 128(5):3175–3180

    Article  PubMed  Google Scholar 

  • Thurston FL, von Ramm OT (1974) A new ultrasound imaging echnique employing two-dimensional electronic beam steering. Acoust Holography 5:249

    Article  Google Scholar 

  • Topp KA, Zachary JF, O’Brien WD Jr (2001) Quantifying b-mode images of in vivo rat mammary tumors by the frequency dependence of backscatter. J Ultrasound Med 20:605–612

    PubMed  CAS  Google Scholar 

  • Varghese T, Donohue KD (1993) Characterization of tissue microstructure scatterer distribution with spectral correlation. Ultrason Imag 15(3):238–254

    CAS  Google Scholar 

  • Vlad RM, Brand S, Giles A, Kolios MC, Czarnota GJ (2009) Quantitative ultrasound characterization of responses to radiotherapy in cancer mouse models. Clin Cancer Res 15:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Waag RC, Nilsson JO, Astheimer JP (1983) Characterization of volume scattering power spectra in isotropic media from power spectra of scattering by planes. J Acoust Soc Am 74(5):1555–1571

    Article  Google Scholar 

  • Wear KA, Gara BS, Hall TJ (1995) Measurements of ultrasonic backscatter coefficients in human liver and kidney in vivo. J Acoust Soc Am 98:1852–1857

    Article  PubMed  CAS  Google Scholar 

  • Wear KA, Wagner RF, Brown DG, Insana MF (1997) Statistical properties of estimates of signal-to-noise ratio and number of scatterers per resolution cell. J Acoust Soc Am 102(1):635–641

    Article  PubMed  CAS  Google Scholar 

  • Wear KA, Stiles TA, Frank GR, Madsen EL, Cheng F, Feleppa EJ, Hall CS, Kim BS, Lee P, Oelze ML, Raju BI, Shung KK, Wilson TA, Yuan JR (2005) Interlaboratory comparison of ultrasonic backscatter coefficint measurements from 2 to 9 MHz. J Ultrasound Med 24:1235–1250

    PubMed  Google Scholar 

  • Wells PNT (1966) Developments in medical ultrasonics. World Med Electron 4:272

    Google Scholar 

  • Wells PNT (1975) Absorption and dispersion of ultrasound in biological tissue. Ultrasound Med Biol 1:369–376

    Article  PubMed  CAS  Google Scholar 

  • Wild JJ (1950) The use of ultrasonic pulses for the measurement of biological tissues and the detection of tissue density changes. Surgery 27:183–188

    PubMed  CAS  Google Scholar 

  • Wild JJ, Neal D (1951) Use of high frequency ultrasonic waves for detecting changes in texture in living tissue. Lancet 1:655–657

    Article  PubMed  CAS  Google Scholar 

  • Wild JJ, Reid JM (1952a) Application of echo-ranging techniques to the determination of structure of biological tissues. Science 115:226–230

    Article  PubMed  CAS  Google Scholar 

  • Wild JJ, Reid JM (1952b) Further pilot echographic studies on the histologic structure of tumors of the living intact human breast. Am J Path 28(5):839–861

    PubMed  CAS  Google Scholar 

  • Wild JJ, French LA, Neal D (1950) Detection of cerebral tumours by ultrasonic pulses: pilot studies on postmortem material. Cancer 3(4):705–708

    Article  PubMed  Google Scholar 

  • Wilson DK, Brasseur JG, Gilbert KE (1999) Acoustic scattering and the spectrum of atmospheric turbulence. J Acoust Soc Am 105:30–34

    Article  Google Scholar 

  • Wirtzfeld LA, Ghoshal G, Hafez ZT, Nam K, Labyed Y, Anderson JA, Herd M, Haak A, He Z, Miller RJ, Sarwate S, Zagzebski JA, Bigelow TA, Oelze ML, Hall TJ, O’Brien WD Jr (2010) Cross-imaging platform comparison of ultrasonic backscatter coefficient measurements of live rat tumors. J Ultrasound Med 29:1117–1123

    PubMed  Google Scholar 

  • Wirtzfeld LA, Nam K, Labyed Y, Ghoshal G, Haak A, Sen-Gupta E, He Z, Hirtz NR, Miller RJ, Sarwate S, Simpson DG, Zagzebski JA, Bigelow TA, Oelze ML, Hall TJ, O’Brien WD Jr (2013) Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model. IEEE Trans Ultrason Ferroelectr Freq Control (in press)

    Google Scholar 

  • Yokio H, Ito K (1972) Ultrasonic diagnostic equipment with color display unit for simultaneous tomogram method. Toshiba Rev 14–21

    Google Scholar 

  • Yuhas DE, Mimbs JW, Miller JG, Weiss AN, Sobel BE (1976) Correlation between changes in the frequency dependence of ultrasonic attenuation and regional cpk depletion associated with myocardial infarction. Reflections p 114.

    Google Scholar 

  • Zagzebski JA, Lu ZF, Yao LX (1993) Quantitative ultrasound imaging: in vivo results in normal liver. Ultrason Imageing 15(4):335–351

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by NIH Grant R01EB008992, R01CA111289 and R21CA139095 (National Institutes of Health, Bethesda, MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. O’Brien Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ghoshal, G., Oelze, M.L., O’Brien Jr., W.D. (2013). Quantitative Ultrasound History and Successes. In: Mamou, J., Oelze, M. (eds) Quantitative Ultrasound in Soft Tissues. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6952-6_2

Download citation

Publish with us

Policies and ethics