Skip to main content

Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique

  • Chapter
  • First Online:
Nanomechanical Analysis of High Performance Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

Abstract

Development of PeakForce QNM® a new, powerful scanning probe microscopy (SPM) method for high resolution, nanoscale quantitative mapping of mechanical properties is described. Material properties such as elastic modulus, dissipation, adhesion, and deformation are mapped simultaneously with topography at real imaging speeds with nanoscale resolution. PeakForce QNM has several distinct advantages over other SPM based methods for nanomechanical characterization including ease of use, unambiguous and quantitative material information, non-destructive to both tip and sample, and fast acquisition times. This chapter discusses the theory and operating principles of PeakForce QNM and applications to measure mechanical properties of a variety of materials ranging from polymer blends and films to single crystals and even cement paste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cleveland JP, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72(20):2613–2615

    Article  Google Scholar 

  • Dokukin ME, Sokolov I (2012) Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 28(46):16060–16071. doi:10.1021/la302706b

    Article  Google Scholar 

  • Israelachvili N (1992) Intermolecular and surface forces Academic Press, New York

    Google Scholar 

  • Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale. Proc Nat Acad Sci United States of Am 103(13):4813–4818. doi:10.1073/pnas.0505628103

    Google Scholar 

  • Magonov S, Erina N (2005) Modern Trends in Atomic Force Microscopy of Polymers. Bruker application note AN84

    Google Scholar 

  • Maugis D (2000) Contact, adhesion and rupture of elastic solids. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Pittenger B, Erina N, Su C (2010) Quantitative Mechanical Property Mapping at the Nanoscale with Peak Force QNM. Bruker application note AN128

    Google Scholar 

  • Proksch R (2006) Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Appl Phys Lett 89(11):113121–113123

    Article  Google Scholar 

  • Radmacher M, Cleveland JP, Fritz M, Hansma HG and Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys J 66:2159–2165

    Google Scholar 

  • Rode S, Oyabu N, Kobayashi K, Yamada H, Kühnle A (2009) True atomic-resolution Imaging of (1014) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir 25(5):2850–2853. doi:10.1021/la803448v

    Article  Google Scholar 

  • Rodriguez TR, Garcia R (2004) Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl Phys Lett 84(3):449–451

    Article  Google Scholar 

  • Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Technol 8(11):1333

    Article  Google Scholar 

  • Sahin O (2005) Harmonic force microscope: a new tool for biomolecular identification and material characterization based on nanomechanical Measurements. Stanford University

    Google Scholar 

  • Sahin O (2007) Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements. Rev Sci Instrum 78(10):103707–103704

    Article  Google Scholar 

  • Sahin O, Magonov S, Su C, Quate CF, Solgaard O (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol 2(8):507–514

    Article  Google Scholar 

  • Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Sci 33(7):759–785. doi:http://dx.doi.org/10.1016/j.progpolymsci.2008.05.001

  • Stark M, Stark RW, Heckl WM, Guckenberger R (2002) Inverting dynamic force microscopy: From signals to time-resolved interaction forces. Proc Nat Acad Sci 99(13):8473–8478. doi:10.1073/pnas.122040599

    Google Scholar 

  • Tamayo J, Garcia R (1997) Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl Phys Lett 71(16):2394–2396

    Article  Google Scholar 

  • Thoreson EJ, Martin J, Burnham NA (2006) The role of few-asperity contacts in adhesion. J Colloid Int Sci 298(1):94–101. doi:http://dx.doi.org/10.1016/j.jcis.2005.11.054

    Google Scholar 

  • Trtik P, Kaufmann J, Volz U (2012) On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste. Cem Concr Res 42(1):215–221. doi:http://dx.doi.org/10.1016/j.cemconres.2011.08.009

  • Veeco Application note #84

    Google Scholar 

  • Veeco (2010) Quantitative mechanical property mapping at the nanoscale with PeakForce QNM

    Google Scholar 

  • Young TJ, Monclus MA, Burnett TL, Broughton WR, Ogin SL, Smith PA (2011) The use of the PeakForce TM quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas Sci Technol 22(12):125703

    Article  Google Scholar 

  • Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290(1–2):L688–L692. doi:http://dx.doi.org/10.1016/0167-2584(93)90906-Y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bede Pittenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pittenger, B., Erina, N., Su, C. (2014). Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics