Skip to main content

The Versatility of Peroxisome Function in Filamentous Fungi

  • Chapter
  • First Online:
Peroxisomes and their Key Role in Cellular Signaling and Metabolism

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Peroxisomes are ubiquitous and versatile cell organelles. They consist of a single membrane that encloses a proteinaceous matrix. Conserved functions are fatty acid β-oxidation and hydrogen peroxide metabolism. In filamentous fungi, many other metabolic functions have been identified. Also, they contain highly specialized peroxisome-derived structures termed Woronin bodies, which have a structural function in plugging septal pores in order to prevent cytoplasmic bleeding of damaged hyphae.

In filamentous fungi peroxisomes play key roles in the production of a range of secondary metabolites such as antibiotics. Most likely the atlas of fungalperoxisomal metabolic pathways is still far from complete. Relative recently discovered functions include their role in biotin biosynthesis as well as in the production of several toxins, among which polyketides. Finally, in filamentous fungi peroxisomes are important for development and pathogenesis.

In this contribution we present an overview of our current knowledge on fungal peroxisome formation as well as on their functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asakura M, Yoshino K, Hill AM, Kubo Y, Sakai Y, Takano Y (2012) Primary and secondary metabolism regulates lipolysis in appressoria of Colletotrichum orbiculare. Fungal Genet Biol: FG & B 49(11):967–975

    Article  CAS  Google Scholar 

  • Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ (2011a) Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77(4):1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Bartoszewska M, Opalinski L, Veenhuis M, van der Klei IJ (2011b) The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnol Lett 33(10):1921–1931

    Article  PubMed  CAS  Google Scholar 

  • Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP (2011) Allergens/Antigens, toxins and polyketides of important Aspergillus species. Indian J Clin Biochem: IJCB 26(2):104–119

    Article  PubMed  CAS  Google Scholar 

  • Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763(12):1565–1573

    Article  PubMed  CAS  Google Scholar 

  • De Lucas JR, Valenciano S, Dominguez AI, Turner G, Laborda F (1997) Characterization of oleate-nonutilizing mutants of Aspergillus nidulans isolated by the 3-amino-1,2,4-triazole positive selection method. Arch Microbiol 168(6):504–512

    Article  PubMed  Google Scholar 

  • Eitzen GA, Szilard RK, Rachubinski RA (1997) Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J Cell Biol 137(6):1265–1278

    Article  PubMed  CAS  Google Scholar 

  • Escano CS, Juvvadi PR, Jin FJ, Takahashi T, Koyama Y, Yamashita S, Maruyama J, Kitamoto K (2009) Disruption of the Aopex11-1 gene involved in peroxisome proliferation leads to impaired Woronin body formation in Aspergillus oryzae. Eukaryot Cell 8(3):296–305

    Article  PubMed  CAS  Google Scholar 

  • Freitag J, Ast J, Bolker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485(7399):522–525

    Article  PubMed  CAS  Google Scholar 

  • Fujihara N, Sakaguchi A, Tanaka S, Fujii S, Tsuji G, Shiraishi T, O’Connell R, Kubo Y (2010) Peroxisome biogenesis factor PEX13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Mol Plant-Microbe Interact: MPMI 23(4):436–445

    Article  PubMed  CAS  Google Scholar 

  • Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155(6):979–990

    Article  PubMed  CAS  Google Scholar 

  • Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1998) Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 63(6):1622–1630

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Murray SL, Duncan A, Khew GS, Davis MA (2006) Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 5(5):794–805

    Article  PubMed  CAS  Google Scholar 

  • Imazaki A, Tanaka A, Harimoto Y, Yamamoto M, Akimitsu K, Park P, Tsuge T (2010) Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata. Eukaryot Cell 9(5):682–694

    Article  PubMed  CAS  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2(4):226–231

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, van der Klei IJ (2009) Proteins involved in microbody biogenesis and degradation in Aspergillus nidulans. Fungal Genet Biol: FG & B 46(Suppl 1):S62–S71

    Article  CAS  Google Scholar 

  • Kiel JA, van der Klei IJ, van den Berg MA, Bovenberg RA, Veenhuis M (2005) Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol: FG & B 42(2):154–164

    Article  CAS  Google Scholar 

  • Kiel JA, Veenhuis M, van der Klei IJ (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7(10):1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, van den Berg MA, Fusetti F, Poolman B, Bovenberg RA, Veenhuis M, van der Klei IJ (2009) Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics 9(2):167–184

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13(8): 1945–1957

    PubMed  CAS  Google Scholar 

  • Koek A, Komori M, Veenhuis M, van der Klei IJ (2007) A comparative study of peroxisomal structures in Hansenula polymorpha pex mutants. FEMS Yeast Res 7(7):1126–1133

    Article  PubMed  CAS  Google Scholar 

  • Koetsier MJ, Jekel PA, van den Berg MA, Bovenberg RA, Janssen DB (2009) Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum. Biochem J 417(2):467–476

    Article  PubMed  CAS  Google Scholar 

  • Komori M, Rasmussen SW, Kiel JA, Baerends RJ, Cregg JM, van der Klei IJ, Veenhuis M (1997) The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J 16(1):44–53

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Misaki R, Gelman L, Watabe S (2007) Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. Gen Comp Endocrinol 154(1–3):120–127

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Ng SK, Lu Y, Low W, Lai J, Jedd G (2008) Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. J Cell Biol 180(2):325–339

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Agrawal G, Subramani S (2011) Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 193(1):7–16

    Article  PubMed  CAS  Google Scholar 

  • Maggio-Hall LA, Wilson RA, Keller NP (2005) Fundamental contribution of beta-oxidation to polyketide mycotoxin production in planta. Mol Plant-Microbe Interact: MPMI 18(8):783–793

    Article  PubMed  CAS  Google Scholar 

  • Magliano P, Flipphi M, Arpat BA, Delessert S, Poirier Y (2011) Contributions of the peroxisome and beta-oxidation cycle to biotin synthesis in fungi. J Biol Chem 286(49):42133–42140

    Article  PubMed  CAS  Google Scholar 

  • Managadze D, Wurtz C, Wiese S, Schneider M, Girzalsky W, Meyer HE, Erdmann R, Warscheid B, Rottensteiner H (2010a) Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. Eur J Cell Biol 89(12):955–964

    Article  PubMed  CAS  Google Scholar 

  • Managadze D, Wurtz C, Wiese S, Meyer HE, Niehaus G, Erdmann R, Warscheid B, Rottensteiner H (2010b) A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa. Proteomics 10(18):3222–3234

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Ullan RV, Casqueiro J (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88:91–109

    PubMed  CAS  Google Scholar 

  • Martin JF, Ullan RV, Garcia-Estrada C (2010) Regulation and compartmentalization of beta-lactam biosynthesis. Microb Biotechnol 3(3):285–299

    Article  PubMed  CAS  Google Scholar 

  • Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76(17):5702–5709

    Article  PubMed  CAS  Google Scholar 

  • Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12(3): 273–277

    PubMed  CAS  Google Scholar 

  • Momany M, Richardson EA, Van Sickle C, Jedd G (2002) Mapping Woronin body position in Aspergillus nidulans. Mycologia 94(2):260–266

    Article  PubMed  Google Scholar 

  • Motley AM, Hettema EH (2007) Yeast peroxisomes multiply by growth and division. J Cell Biol 178(3):399–410

    Article  PubMed  CAS  Google Scholar 

  • Muller WH, Bovenberg RA, Groothuis MH, Kattevilder F, Smaal EB, Van der Voort LH, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116(2):210–213

    Article  PubMed  CAS  Google Scholar 

  • Nagotu S, Saraya R, Otzen M, Veenhuis M, van der Klei IJ (2008) Peroxisome proliferation in Hansenula polymorpha requires Dnm1p which mediates fission but not de novo formation. Biochim Biophys Acta 1783(5):760–769

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Sato H, Okuda T, Fujisawa N, Kono N, Arai H, Suzuki E, Umeda M, Ishikawa HO, Matsuno K (2011) Drosophila carrying pex3 or pex16 mutations are models of Zellweger syndrome that reflect its symptoms associated with the absence of peroxisomes. PLoS One 6(8):e22984

    Article  PubMed  CAS  Google Scholar 

  • Ng SK, Liu F, Lai J, Low W, Jedd G (2009) A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet 5(6):e1000521

    Article  PubMed  Google Scholar 

  • Nuttall JM, Motley A, Hettema EH (2011) Peroxisome biogenesis: recent advances. Curr Opin Cell Biol 23(4):421–426

    Article  PubMed  CAS  Google Scholar 

  • Opalinski L, Kiel JA, Homan TG, Veenhuis M, van der Klei IJ (2010) Penicillium chrysogenum Pex14/17p–a novel component of the peroxisomal membrane that is important for penicillin production. FEBS J 277(15):3203–3218

    Article  PubMed  CAS  Google Scholar 

  • Opalinski L, Kiel JA, Williams C, Veenhuis M, van der Klei IJ (2011) Membrane curvature during peroxisome fission requires Pex11. EMBO J 30(1):5–16

    Article  PubMed  CAS  Google Scholar 

  • Opalinski L, Bartoszewska M, Fekken S, Liu H, de Boer R, van der Klei I, Veenhuis M, Kiel JA (2012) De novo peroxisome biogenesis in Penicillium chrysogenum is not dependent on the Pex11 family members or Pex16. PLoS One 7(4):e35490

    Article  PubMed  CAS  Google Scholar 

  • Peraza-Reyes L, Zickler D, Berteaux-Lecellier V (2008) The peroxisome RING-finger complex is required for meiocyte formation in the fungus Podospora anserina. Traffic 9(11):1998–2009

    Article  PubMed  CAS  Google Scholar 

  • Peraza-Reyes L, Arnaise S, Zickler D, Coppin E, Debuchy R, Berteaux-Lecellier V (2011) The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway. Mol Microbiol 82(2):365–377

    Article  PubMed  CAS  Google Scholar 

  • Saikia S, Scott B (2009) Functional analysis and subcellular localization of two geranylgeranyl diphosphate synthases from Penicillium paxilli. Mol Genet Genomics: MGG 282(3):257–271

    Article  PubMed  CAS  Google Scholar 

  • Salomons FA, Kiel JA, Faber KN, Veenhuis M, van der Klei IJ (2000) Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J Biol Chem 275(17):12603–12611

    Article  PubMed  CAS  Google Scholar 

  • Saraya R, Krikken AM, Veenhuis M, van der Klei IJ (2011) Peroxisome reintroduction in Hansenula polymorpha requires Pex25 and Rho1. J Cell Biol 193(5):885–900

    Article  PubMed  CAS  Google Scholar 

  • Schliebs W, Kunau WH (2004) Peroxisome membrane biogenesis: the stage is set. Curr Biol: CB 14(10):R397–R399

    Article  PubMed  CAS  Google Scholar 

  • Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner H (2003) Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol Biol Cell 14(2):810–821

    Article  PubMed  CAS  Google Scholar 

  • Soundararajan S, Jedd G, Li X, Ramos-Pamplona M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16(6):1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Sprote P, Brakhage AA, Hynes MJ (2009) Contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell 8(3):421–423

    Article  PubMed  Google Scholar 

  • Strijbis K, van den Burg J, Visser WF, van den Berg M, Distel B (2012) Alternative splicing directs dual localization of Candida albicans 6-phosphogluconate dehydrogenase to cytosol and peroxisomes. FEMS Yeast Res 12(1):61–68

    Article  PubMed  CAS  Google Scholar 

  • Szewczyk E, Andrianopoulos A, Davis MA, Hynes MJ (2001) A single gene produces mitochondrial, cytoplasmic, and peroxisomal NADP-dependent isocitrate dehydrogenase in Aspergillus nidulans. J Biol Chem 276(40):37722–37729

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Maruyama J, Yamaoka S, Yahagi D, Matsuo I, Tsutsumi N, Kitamoto K (2011) Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis. J Biol Chem 286(35):30455–30461

    Article  PubMed  CAS  Google Scholar 

  • Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol: FG & B 31(3):205–217

    Article  CAS  Google Scholar 

  • Tey WK, North AJ, Reyes JL, Lu YF, Jedd G (2005) Polarized gene expression determines woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16(6):2651–2659

    Article  PubMed  CAS  Google Scholar 

  • Ullan RV, Teijeira F, Guerra SM, Vaca I, Martin JF (2010) Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J 432(2):227–236

    Article  PubMed  CAS  Google Scholar 

  • Valenciano S, De Lucas JR, Van der Klei I, Veenhuis M, Laborda F (1998) Characterization of Aspergillus nidulans peroxisomes by immunoelectron microscopy. Arch Microbiol 170(5):370–376

    Article  PubMed  CAS  Google Scholar 

  • van der Zand A, Braakman I, Geuze HJ, Tabak HF (2006) The return of the peroxisome. J Cell Sci 119(Pt 6):989–994

    Article  PubMed  Google Scholar 

  • Yuan P, Jedd G, Kumaran D, Swaminathan S, Shio H, Hewitt D, Chua NH, Swaminathan K (2003) A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Biol 10(4):264–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Rinse de Boer for preparing the electron micrographs of Fig. 8.3 and preparing all figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida J. van der Klei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van der Klei, I.J., Veenhuis, M. (2013). The Versatility of Peroxisome Function in Filamentous Fungi. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_8

Download citation

Publish with us

Policies and ethics