Skip to main content

Development of cellulase-producing industrial Saccharomyces cerevisiae strains for consolidated bioprocessing

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Biorefinery Research and Technology

Abstract

Over the last 25 years the concept of converting abundant lignocellulosic biomass resources to renewable commodity products through microbial conversion has been widely explored. Despite the promise of renewable, sustainable fuels and chemicals from feedstocks that limit interference with food production, cellulosic ethanol production at industrial scale is limited. Reasons for this include the recalcitrance, variability, and low energy density of the feedstock, as well as the significant capital and operations costs involved. Other process-related issues such as the invariably stressful fermentation conditions in cellulosic ethanol production have also been identified and strategies to mitigate these problems have been researched. Consolidated bioprocessing (CBP) with the industrial ethanologenic yeast Saccharomyces cerevisiae could address several of these complications if process-ready strains can be developed. This chapter will discuss the status quo of developing S. cerevisiae strains for CBP of cellulosic substrates. It will highlight expression of cellulases and strategies to improve this heterologous expression, including advances in rational engineering interventions and improved strain backgrounds. The possibility of improving strain robustness through knowledge gained from omics studies is also explored. Subsequently, we will shift focus to the possibility of producing other commodity chemicals using these yeasts, highlighting various metabolic engineering efforts to establish a greater product range from lignocellulose-derived sugars for a biorefinery concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12:964. https://doi.org/10.3390/en12060964

    Article  CAS  Google Scholar 

  2. Reid WV, Ali MK, Field CB (2020) The future of bioenergy. Glob Chang Biol 26:274–286. https://doi.org/10.1111/gcb.14883

    Article  PubMed  Google Scholar 

  3. Sharma S, Kundu A, Basu S, Shetti NP, Aminabhavi TM (2020) Sustainable environmental management and related biofuel technologies. J Environ Manag 273:111096. https://doi.org/10.1016/j.jenvman.2020.111096

    Article  CAS  Google Scholar 

  4. Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006

    Article  Google Scholar 

  5. Lane S, Dong J, Jin YS (2018) Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. Bioresour Technol 260:380–394. https://doi.org/10.1016/j.biortech.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  6. Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  7. Sharma J, Kumar V, Prasad R, Gaur NA (2022) Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: recent advancements and current challenges. Biotechnol Adv 56:107925. https://doi.org/10.1016/j.biotechadv.2022.107925

    Article  CAS  PubMed  Google Scholar 

  8. Den Haan R, van Rensburg E, Rose SH, Görgens JF, van Zyl WH (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–38. https://doi.org/10.1016/j.copbio.2014.10.003

    Article  CAS  Google Scholar 

  9. Den Haan R, van Zyl JM, Harms TM, van Zyl WH (2013) Modeling the minimum enzymatic requirements for optimal cellulose conversion. Environ Res Lett 8:025013. https://doi.org/10.1088/1748-9326/8/2/025013

    Article  CAS  Google Scholar 

  10. Den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH (2021) Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: lessons learnt. Biotechnol Adv 53:107859. https://doi.org/10.1016/j.biotechadv.2021.107859

    Article  CAS  Google Scholar 

  11. Valenzuela-Ortega M, French CE (2019) Engineering of industrially important microorganisms for assimilation of cellulosic biomass: towards consolidated bioprocessing. Biochem Soc Trans 47:1781–1794. https://doi.org/10.1042/BST20190293

    Article  CAS  PubMed  Google Scholar 

  12. Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17:fox044. https://doi.org/10.1093/femsyr/fox044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 31:754–763. https://doi.org/10.1016/j.biotechadv.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  14. Ilmén M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-Aho M, La Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl WH, Penttilä M (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30. https://doi.org/10.1186/1754-6834-4-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bamba T, Guirimand G, Kondo A, Hasunuma T (2022) Enzyme display technology for lignocellulosic biomass valorization by yeast cell factories. Curr Opin Green Sustain Chem 33:100584. https://doi.org/10.1016/j.cogsc.2021.100584

    Article  CAS  Google Scholar 

  16. Kim H, Lee WH, Galazka JM, Cate JHD, Jin YS (2014) Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl Microbiol Biotechnol 98:1087–1094. https://doi.org/10.1007/s00253-013-5339-2

    Article  CAS  PubMed  Google Scholar 

  17. Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha SJ, Oh EJ, Galazka JM, Jin YS, Cate JHD (2014) Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnol Biofuels 7:85. https://doi.org/10.1186/1754-6834-7-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94. https://doi.org/10.1016/j.ymben.2006.08.005

    Article  CAS  Google Scholar 

  19. Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH, Han SO (2009) Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cell 28:369–373. https://doi.org/10.1007/s10059-009-0131-y

    Article  CAS  Google Scholar 

  20. Hong J, Yang H, Zhang K, Zhang K, Liu C, Zou S, Zhang M (2014) Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity. World J Microbiol Biotechnol 30:2985–2993. https://doi.org/10.1007/s11274-014-1726-9

    Article  CAS  PubMed  Google Scholar 

  21. Khramtsov N, McDade L, Amerik A, Yu E, Divatia K, Tikhonov A, Minto M, Kabongo-Mubalamate G, Markovic Z, Ruiz-Martinez M, Henck S et al (2011) Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresour Technol 102:8310–8313. https://doi.org/10.1016/j.biortech.2011.05.075

    Article  CAS  PubMed  Google Scholar 

  22. Davison SA, den Haan R, van Zyl WH (2016) Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 100:8241–8254. https://doi.org/10.1007/s00253-016-7735-x

    Article  CAS  PubMed  Google Scholar 

  23. Davison SA, Keller NT, van Zyl WH, den Haan R (2019) Improved cellulase expression in diploid yeast strains enhanced consolidated bioprocessing of pretreated corn residues. Enzym Microb Technol 131:109382. https://doi.org/10.1016/j.enzmictec.2019.109382

    Article  CAS  Google Scholar 

  24. Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, Tanaka A (1997) Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:499–503. https://doi.org/10.1007/s002530051086

    Article  CAS  PubMed  Google Scholar 

  25. Fujita Y, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212. https://doi.org/10.1128/AEM.70.2.1207-1212.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Z, Inokuma K, Ho S-H, den Haan R, Hasunuma T, van Zyl WH, Kondo A (2015) Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels 8:162. https://doi.org/10.1186/s13068-015-0344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Z, Ho SH, Sasaki K, den Haan R, Inokuma K, Ogino C, van Zyl WH, Hasunuma T, Kondo A (2016) Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production. Sci Rep 6:24550. https://doi.org/10.1038/srep24550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Z, Inokuma K, Ho SH, den Haan R, van Zyl WH, Hasunuma T, Kondo A (2017) Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae. Biotechnol Bioeng 114:1201–1207. https://doi.org/10.1002/bit.26252

    Article  CAS  PubMed  Google Scholar 

  29. Fan L-H, Zhang Z-J, Yu X-Y, Xue Y-X, Tan T-W (2012) Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci 109:13260–13265. https://doi.org/10.1073/pnas.1209856109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsai SL, DaSilva NA, Chen W (2013) Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2:14–21. https://doi.org/10.1021/sb300047u

    Article  CAS  PubMed  Google Scholar 

  31. Kroukamp H, den Haan R, van Zyl JH, van Zyl WH (2018) Rational strain engineering interventions to enhance cellulase secretion by Saccharomyces cerevisiae. Biofuels Bioprod Biorefin 12:108–124. https://doi.org/10.1002/bbb.1824

    Article  CAS  Google Scholar 

  32. Van Rensburg E, den Haan R, Smith J, van Zyl WH, Görgens JF (2012) The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 96:197–209. https://doi.org/10.1007/s00253-012-4037-9

    Article  CAS  PubMed  Google Scholar 

  33. Davison SA, den Haan R, van Zyl WH (2020) Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 104:5163–5184. https://doi.org/10.1007/s00253-020-10602-2

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Shen Y, Hou J, Peng B, Tang H, Bao X (2014) Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioeng 117:45–52. https://doi.org/10.1016/j.jbiosc.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  35. Kroukamp H, den Haan R, van Wyk N, van Zyl WH (2013) Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Appl Energy 102:150–156. https://doi.org/10.1016/j.apenergy.2012.05.062

    Article  CAS  Google Scholar 

  36. Van Zyl JHD, den Haan R, van Zyl WH (2016) Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 100:505–518. https://doi.org/10.1007/s00253-015-7022-2

    Article  CAS  PubMed  Google Scholar 

  37. Inokuma K, Kitada Y, Bamba T, Kobayashi Y, Yukawa T, den Haan R, van Zyl WH, Kondo A, Hasunuma T (2021) Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain. Appl Microbiol Biotechnol 105:5895–5904. https://doi.org/10.1007/s00253-021-11440-6

    Article  CAS  PubMed  Google Scholar 

  38. Brandt BA, Jansen T, Volschenk H, Görgens JF, van Zyl WH, den Haan R (2021) Stress modulation as a means to improve yeasts for lignocellulose bioconversion. Appl Microbiol Biotechnol 105:4899–4918. https://doi.org/10.1007/s00253-021-11383-y

    Article  CAS  PubMed  Google Scholar 

  39. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195. https://doi.org/10.1534/genetics.111.128033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao W, Duan X, Lin Y, Cao Q, Li S, Guo Y, Gan Y, Qi X, Zhou Y, Guo L, Qin P, Wang Q, Shui W (2018) Distinct proteome remodeling of industrial Saccharomyces cerevisiae in response to prolonged thermal stress or transient heat shock. J Proteome Res 17:1812–1825. https://doi.org/10.1021/acs.jproteome.7b00842

    Article  CAS  PubMed  Google Scholar 

  41. Jönsson LJ, Martìn C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  42. Cámara E, Olsson L, Zrimec J, Zelezniak A, Geijer C, Nygårda Y (2022) Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 94:107947. https://doi.org/10.1016/j.biotechadv.2022.107947

    Article  CAS  Google Scholar 

  43. Lamour J, Wan C, Zhang M, Zhao X, den Haan R (2019) Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase. FEMS Yeast Res 19:foz035. https://doi.org/10.1093/femsyr/foz035

    Article  CAS  PubMed  Google Scholar 

  44. De Witt R, Kroukamp H, Volschenk H (2018) Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance. FEMS Yeast Res 19:foy116. https://doi.org/10.1093/femsyr/foy116

    Article  CAS  Google Scholar 

  45. Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L (2018) HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol 102:4589–4600. https://doi.org/10.1007/s00253-018-8955-z

    Article  CAS  PubMed  Google Scholar 

  46. Zhang M-M, Xiong L, Tang Y-J, Mehmood MA, Zhao ZK, Bai F-W, Zhao X-Q (2019) Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnol Biofuels 12:116. https://doi.org/10.1186/s13068-019-1456-1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sousa M, Duarte AM, Ernandes TR, Chaves SR, Pacheco A, Leão C, Côrte-Real M, Sousa MJ (2013) Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics 14:838. https://doi.org/10.1186/1471-2164-14-838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, Zheng D (2016) Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol Lett 38:1097–1106. https://doi.org/10.1007/s10529-016-2085-4

    Article  CAS  PubMed  Google Scholar 

  49. Nygård Y, Mojzita D, Toivari M, Penttilä M, Wiebe MG, Ruohonen L (2014) Diverse role of Pdr12 in resistance to weak organic acids. Yeast 31:219–223. https://doi.org/10.1002/yea.3011

    Article  CAS  PubMed  Google Scholar 

  50. Ding J, Holzwarth G, Bradford CS, Cooley B, Yoshinaga AS, Patton-Vogt J, Abeliovich H, Penner MH, Bakalinsky AT (2015) PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microbiol Biotechnol 99:8667–8680. https://doi.org/10.1007/s00253-015-6708-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alriksson B, Horváth IS, Jönsson LJ (2010) Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem 45:264–271. https://doi.org/10.1016/j.procbio.2009.09.016

    Article  CAS  Google Scholar 

  52. Ayodele BV, Alsaffar MA, Mustapa SI (2020) An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod 245:118857. https://doi.org/10.1016/j.jclepro.2019.118857

    Article  Google Scholar 

  53. Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, Himmel ME, Laser MS, Wang M, Wyman CE (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211. https://doi.org/10.1016/j.copbio.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  54. Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Biorefin 10:164–174. https://doi.org/10.1002/bbb.1634

    Article  CAS  Google Scholar 

  55. Baptista SL, Carvalho LC, Romaní A, Domingues L (2020) Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob. Ind Crop Prod 156:112867. https://doi.org/10.1016/j.indcrop.2020.112867

    Article  CAS  Google Scholar 

  56. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “top 10” revisited. Green Chem 12:539–555. https://doi.org/10.1039/b922014c

    Article  CAS  Google Scholar 

  57. Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L (2021) Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 47:107697. https://doi.org/10.1016/j.biotechadv.2021.107697

    Article  CAS  PubMed  Google Scholar 

  58. Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690. https://doi.org/10.1007/s00018-012-0945-1

    Article  CAS  PubMed  Google Scholar 

  59. Baek S-H, Kwon EY, Bae S-J, Cho B-R, Kim S-Y, Hahn J-S (2017) Improvement of D-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering. Biotechnol J 12:1700015. https://doi.org/10.1002/biot.201700015

    Article  CAS  Google Scholar 

  60. Hernández-Pérez AF, de Arruda PV, Sene L, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MDG (2019) Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 39:924–943. https://doi.org/10.1080/07388551.2019.1640658

    Article  CAS  Google Scholar 

  61. Yan Y, Bu C, Huang X, Ouyang J (2019) Efficient whole-cell biotransformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae NL22. J Chem Technol Biotechnol 94:3825–3831. https://doi.org/10.1002/jctb.6177

    Article  CAS  Google Scholar 

  62. Overkamp KM, Bakker BM, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2002) Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol 68:2814–2821. https://doi.org/10.1128/AEM.68.6.2814-2821.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nandy SK, Srivastava RK (2018) A review on sustainable yeast biotechnological processes and applications. Microbiol Res 207:83–90. https://doi.org/10.1016/j.micres.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  64. Cripwell RA, Favaro L, Viljoen-Bloom M, van Zyl WH (2020) Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: achievements and challenges. Biotechnol Adv 42:107579. https://doi.org/10.1016/j.biotechadv.2020.107579

    Article  CAS  PubMed  Google Scholar 

  65. Bhatia R, Gallagher JA, Gomez LD, Bosch M (2017) Genetic engineering of grass cell wall polysaccharides for biorefining. Plant Biotechnol J 15:1071–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585. https://doi.org/10.1016/j.biortech.2019.122585

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem H. van Zyl .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

den Haan, R., J. Hoffmeester, L., Jansen, T., van Zyl, W.H. (2023). Development of cellulase-producing industrial Saccharomyces cerevisiae strains for consolidated bioprocessing. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_28-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_28-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    strains for consolidated bioprocessing
    Published:
    09 July 2023

    DOI: https://doi.org/10.1007/978-94-007-6724-9_28-2

  2. Original

    strains for consolidated bioprocessing
    Published:
    06 April 2023

    DOI: https://doi.org/10.1007/978-94-007-6724-9_28-1