Skip to main content

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

Anoxia in the root system leads to the formation of ethanol in roots, the transport of ethanol to the leaves and strong foliar emissions of ethanol and acetaldehyde. In addition, emissions of typical stress-related volatiles are elicited. This chapter reviews the environmental, biochemical and physiological controls on flooding-driven products of anoxic metabolism and stress signalling compounds. It demonstrates that the various controls operate at different timescales and, furthermore, that these emissions are characterized by strong differences between species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25:1–21

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343

    Article  CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    Article  PubMed  CAS  Google Scholar 

  • Boamfa EI, Veres AH, Ram PC, Jackson MB, Reuss J, Harren FJM (2005) Kinetics of ethanol and acetaldehyde release suggest a role for acetaldehyde production in tolerance of rice seedlings to micro-aerobic conditions. Ann Bot 93:727–736

    Article  Google Scholar 

  • Bracho Nunez A, Knothe NM, Liberato MAR, Schebeske G, Ciccioli P, Piedade MTF, Kesselmeier J (2009) Flooding effects on plant physiology and VOC emissions from Amazonian tree species from two different flooding environments: Varzea and Igapo. Geophys Res Abstr 11:EGU1497

    Google Scholar 

  • Bracho-Nunez A, Knothe NM, Costa WR, Liberato MAR, Kleiss B, Rottenberger S, Piedade MTF, Kesselmeier J (2012) Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short- and long-term inundation of trees from Amazonian floodplains. Springer Plus 1:9. doi:10.1186/2193-1801-1-9

    Article  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J (2005) Genomewide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    Article  PubMed  CAS  Google Scholar 

  • Copolovici L, Niinemets Ü (2010) Flooding induced emissions of volatile signaling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 33:1582–1594

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airakia M, Chakia M, Palmaa JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  PubMed  CAS  Google Scholar 

  • Crawford RMM, Finegan DM (1989) Removal of ethanol from lodgepole pine roots. Tree Physiol 5:53–61

    Article  PubMed  CAS  Google Scholar 

  • Davies DD (1980) Anaerobic metabolism and the production of organic acids. In: Davies DD (ed) The biochemistry of plants. A comprehensive treatise, vol 2. Academic, New York, pp 581–611

    Google Scholar 

  • De Simone O, Miller E, Junk WJ, Schmidt W (2002a) Adaptations of central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Funct Plant Biol 29:1025–1035

    Article  Google Scholar 

  • De Simone O, Haase K, Miller E, Junk WJ, Gonsior GA, Schmidt W (2002b) Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct Plant Biol 29:1025–1035

    Article  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Phys 48:223–250

    CAS  Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol: the simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Fall R, Monson RK (1992) Isoprene emission rate and intercellular isoprene concentration as influenced by stomatal distribution and conductance. Plant Physiol 100:987–992

    Article  PubMed  CAS  Google Scholar 

  • Ferner E, Rennenberg H, Kreuzwieser J (2012) Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Tree Physiol 32:135–145

    Article  PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Frenkel C, Peters JS, Tieman DM, Tiznado ME, Handa AK (1998) Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J Biol Chem 273:4293–4295

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Crosby WL (1989) Induction of alcohol dehydrogenase and lactate dehydrogenase in hypoxically induced barley. Plant Physiol 90:860–866

    Article  PubMed  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Ethylene and flooding stress in plants. Plant Physiol Biochem 39:1–9

    Article  CAS  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ, Kesselmeier J (2000) Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions. J Geophys Res 105:20573–20579

    Article  CAS  Google Scholar 

  • Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets Ü, Walter A, Wildt J (2007) Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793

    Article  PubMed  Google Scholar 

  • Jaeger C, Gessler A, Biller S, Rennenberg H, Kreuzwieser J (2009) Differences in C metabolism of ash species and provenances as a consequence of root oxygen deprivation by waterlogging. J Exp Bot 60:4335–4345

    Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  PubMed  CAS  Google Scholar 

  • Kreuzwieser J (2002) Exchange of trace gases at the tree – atmosphere interface. In: Papen H, Gasche R, Rennenberg H (eds) Trace gas exchange in forest ecosystems. Kluwer Academic Publishing, Dordrecht, pp 193–209

    Chapter  Google Scholar 

  • Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by trees. J Exp Bot 50:757–765

    CAS  Google Scholar 

  • Kreuzwieser J, Kühnemann F, Martis A, Rennenberg H, Urban W (2000) Diurnal pattern of acetaldehyde emission by flooded poplar trees. Physiol Plant 108:79–86

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Harren FJM, Laarhoven LJJ, Boamfa I, te Lintel-Hekkert S, Scheerer U, Hüglin C, Rennenberg H (2001) Acetaldehyde emission by the leaves of trees – correlation with physiological and environmental parameters. Physiol Plant 113:41–49

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Papadopoulou E, Rennenberg H (2004) Interaction of flooding with carbon metabolism of trees. Plant Biol 6:299–306

    Article  PubMed  CAS  Google Scholar 

  • Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH, Whelan J (2009) Differential response of grey poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol 149:461–473

    Article  PubMed  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Staehelin LA (1992) Synthesis, assembly and function of plant cell wall macromolecules. Curr Opin Cell Biol 4:856–862

    Article  PubMed  CAS  Google Scholar 

  • Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315

    Article  PubMed  CAS  Google Scholar 

  • Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • MacCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, San Diego, pp 109–129

    Google Scholar 

  • MacDonald RC, Kimmerer TW (1991) Ethanol in the stems of trees. Physiol Plant 82:582–588

    Article  CAS  Google Scholar 

  • MacDonald RC, Kimmerer TW (1993) Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides Bartr.). Plant Physiol 102:173–179

    PubMed  CAS  Google Scholar 

  • Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  CAS  Google Scholar 

  • Millet DB, Guenther A, Siegel DA, Nelson NB, Singh HB, de Gouw JA, Warneke C, Willimas J, Eerdekens G, Sinha V, Karl T, Flocke F, Apel E, Riemer DD, Palmer PI, Barkley M (2010) Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmos Chem Phys 10:3405–3425

    Article  CAS  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Mustroph A, Boamfa EI, Laarhoven LJJ, Harren FJM, Albrecht G, Grimm B (2006) Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I. Dark ethanol production is dominated by the shoots. Planta 225:103–114

    Article  PubMed  CAS  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves. Plant Physiol 108:1359–1368

    PubMed  CAS  Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: sensitivity or insensitivity of the emission rates to stomatal closure explained. J Geophys Res Atmos 108:4208. doi: 4210.1029/2002JD002620

    Article  Google Scholar 

  • Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76:521–547

    Article  Google Scholar 

  • Parolin P, De Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Kleiss B, Schmidt W, Piedade MTF, Junk WJ (2004) Central Amazonian floodplain forest: tree adaptations in a pulsing system. Bot Rev 70:357–380

    Article  Google Scholar 

  • Raymond P, Al Alni A, Pradet A (1985) ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds. Plant Physiol 79:879–884

    Article  PubMed  CAS  Google Scholar 

  • Ricard J, Noat G (1986) Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. I. A theory of the ionic control of a complex multi-enzyme system. Eur J Biochem 155:199–202

    Article  PubMed  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Nat Acad Sci 81:3379–3383

    Article  PubMed  CAS  Google Scholar 

  • Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk W, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences 5:1085–1100

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel T, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–345

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Copolovici L, Niinemets Ü (2012) Can the capacity for isoprene emissions acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula? J Plant Res 125:263–274

    Article  PubMed  CAS  Google Scholar 

  • Van Dongen JT, Fröhlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P (2008) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot 103:269–280

    Article  PubMed  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    Article  CAS  Google Scholar 

  • Velikova V, La Mantia T, Lauteri M, Micheklozzi M, Nogues I, Loreto F (2012) The impact of winter flooding with saline water on foliar carbon uptake and volatile fraction of leaves and fruits of lemon (Citrus x limon) trees. Funct Plant Biol 39:199–213

    Article  CAS  Google Scholar 

  • Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153:1895–1906

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Chen LL, Zhang L, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kreuzwieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kreuzwieser, J., Rennenberg, H. (2013). Flooding-Driven Emissions from Trees. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_9

Download citation

Publish with us

Policies and ethics