Skip to main content

An Efficient Beam-Column Element for Inelastic 3D Frame Analysis

  • Chapter
Computational Methods in Earthquake Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 30))

Abstract

Beam-column elements with section resultant plasticity for the hysteretic behavior of the end plastic hinges are widely used for numerical simulations in earthquake engineering practice because of the good compromise between accuracy and computational cost. This chapter presents a three-dimensional inelastic beam-column element of this type with significant capabilities for the description of the global and local response of frames under monotonic and cyclic loads. In the proposed element the concept of generalized plasticity is extended to section resultants and element deformations and is used to describe the hysteretic behavior of the plastic hinges forming at the element ends. The element accounts for the interaction of the axial force with the bending moments about the principal section axes with suitably defined yield and limit surfaces that permit the description of the gradual yielding and the post-yield hardening behavior of the end sections. Comparisons of the hysteretic response of structural elements and small structural models between the proposed element and the more accurate, but computationally more expensive fiber section description of the cross section demonstrate the capabilities of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lubliner J, Taylor RL, Auricchio F (1993) A new model of generalized plasticity and its numerical implementation. Int J Solids Struct 30(22):3171–3184

    Article  MATH  Google Scholar 

  2. Auricchio F, Taylor RL (1995) Two material models for cyclic plasticity—nonlinear kinematic hardening and generalized plasticity. Int J Plast 11(1):65–98

    Article  MATH  Google Scholar 

  3. Auricchio F, Taylor RL (1994) A generalized elastoplastic plate theory and its algorithmic implementation. Int J Numer Methods Eng 37(15):2583–2608. doi:10.1002/nme.1620371506

    Article  MATH  Google Scholar 

  4. Orbison JG, McGuire W, Abel JF (1982) Yield surface applications in nonlinear steel frame analysis. Comput Methods Appl Mech Eng 33(1–3):557–573. doi:10.1016/0045-7825(82)90122-0

    Article  MATH  Google Scholar 

  5. Hilmy SI, Abel JF (1985) Material and geometric nonlinear dynamic analysis of steel frames using computer graphics. Comput Struct 21(4):825–840. doi:10.1016/0045-7949(85)90159-2

    Article  Google Scholar 

  6. Powell GH, Chen PF-S (1986) 3D beam-column element with generalized plastic hinges. J Eng Mech 112(7):627–641. doi:10.1061/(asce)0733-9399(1986)112:7(627)

    Google Scholar 

  7. Hajjar JF, Gourley BC (1997) A cyclic nonlinear model for concrete-filled tubes. I: Formulation. J Struct Eng 123(6):736

    Article  Google Scholar 

  8. Hajjar JF, Gourley BC (1997) A cyclic nonlinear model for concrete-filled tubes. II: Verification. J Struct Eng 123(6):745

    Article  Google Scholar 

  9. Iu CK, Bradford MA, Chen WF (2009) Second-order inelastic analysis of composite framed structures based on the refined plastic hinge method. Eng Struct 31(3):799–813. doi:10.1016/j.engstruct.2008.12.007

    Article  Google Scholar 

  10. Kitipornchai S, Zhu K, Xiang Y, Al-Bermani FGA (1991) Single-equation yield surfaces for monosymmetric and asymmetric sections. Eng Struct 13(4):366–370. doi:10.1016/0141-0296(91)90023-6

    Article  Google Scholar 

  11. Skallerud B (1993) Yield surface formulations for eccentrically loaded planar bolted or welded connections. Comput Struct 48(5):811–818. doi:10.1016/0045-7949(93)90502-5

    Article  Google Scholar 

  12. Chen WF, Atsuta T (1977) Theory of beam-columns. McGraw-Hill, New York

    Google Scholar 

  13. Dafalias YF, Popov EP (1977) Cyclic loading for materials with a vanishing elastic region. Nucl Eng Des 41(2):293–302. doi:10.1016/0029-5493(77)90117-0

    Article  Google Scholar 

  14. El-Tawil S, Deierlein GG (2001) Nonlinear analysis of mixed steel-concrete frames. I: Element formulation. J Struct Eng 127(6):647

    Article  Google Scholar 

  15. El-Tawil S, Deierlein GG (2001) Nonlinear analysis of mixed steel-concrete frames. II: Implementation and verification. J Struct Eng 127(6):656

    Article  Google Scholar 

  16. Jin J, El-Tawil S (2003) Inelastic cyclic model for steel braces. J Eng Mech 129(5):548–557

    Article  Google Scholar 

  17. Simo JC, Hughes TJ (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  18. Kostic SM, Filippou FC, Lee C-L (2009) Evaluation of resultant plasticity and fiber beam-column elements for the simulation of the 3D nonlinear response of steel structures. In: 2nd international conference on computational methods in structural dynamics and earthquake engineering—COMPDYN, Island of Rhodes, 22–24 June 2009

    Google Scholar 

  19. Filippou FC, Fenves GL (2004) Methods of analysis for earthquake-resistant structures. In: Bozorgnia Y, Bertero VV (eds) Earthquake engineering: from engineering seismology to performance-based engineering. CRC Press, Boca Raton

    Google Scholar 

  20. Filippou FC, Constantinides M (2004) FEDEASLab getting started guide and simulation examples (trans: Engineering DoCaE). University of California, Berkeley

    Google Scholar 

  21. Kostic SM, Filippou FC (2010) Section discretization considerations in fiber beam-column elements for nonlinear frame analysis. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley (to be published)

    Google Scholar 

  22. Kostic SM, Filippou FC (2012) Section discretization of fiber beam-column elements for cyclic inelastic response. J Struct Eng 138(5):592–601. doi:10.1061/(ASCE)ST.1943-541X.0000501

    Article  Google Scholar 

  23. El-Zanaty MH, Murray DW, Bjorhovde R (1980) Inelastic behavior of multistory steel frames. Univ. of Alberta, Edmonton

    Google Scholar 

  24. King WS, Chen WF (1994) Practical second-order inelastic analysis of semirigid frames. J Struct Eng 120:2156–2175

    Article  Google Scholar 

  25. Crisfield MA (1991) Non-linear finite element analysis of solids and structures. Wiley, Chichester

    Google Scholar 

  26. Chiorean CG (2009) A computer method for nonlinear inelastic analysis of 3D semi-rigid steel frameworks. Eng Struct 31(12):3016–3033. doi:10.1016/j.engstruct.2009.08.003

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the Ministry of Science of the Republic of Serbia for financial support under the project TR36046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana M. Kostic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kostic, S.M., Filippou, F.C., Lee, CL. (2013). An Efficient Beam-Column Element for Inelastic 3D Frame Analysis. In: Papadrakakis, M., Fragiadakis, M., Plevris, V. (eds) Computational Methods in Earthquake Engineering. Computational Methods in Applied Sciences, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6573-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6573-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6572-6

  • Online ISBN: 978-94-007-6573-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics