Skip to main content

Angiogenesis Assays: An Appraisal of Current Techniques

  • Chapter
  • First Online:
Angiogenesis Modulations in Health and Disease

Abstract

A number of satisfactory methods exist for experimentally estimating the pro- or anti-angiogenic activity of growth factors and pharmaceuticals. We review here a selected group of widely used in vivo and in vitro assays for angiogenesis. The in vivo assays of angiogenesis include the chick chorioallantoic membrane, the zebrafish, tumor xenografts in the mouse and the Matrigel® plug. In vitro assays included here are aortic ring, sprouting and tube formation assays. No method can entirely satisfactorily reproduce human angiogenesis, and thus a risk exists of securely defining pro- or anti-angiogenesis in these models and of subsequent failure to establish clinical effectiveness. On the other hand, most of these assays are readily reproducible, respond to standard pro-angiogenesis factors such as growth factors and angiogenesis inhibitors, and have acceptable cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti-­angiogenic agents. Microvasc Res 74(2–3):172–183

    Article  PubMed  CAS  Google Scholar 

  2. Ucuzian AA, Greisler HP (2007) In vitro models of angiogenesis. World J Surg 31(4):654–663

    Article  PubMed  Google Scholar 

  3. Staton CA, Reed MWR, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Path 90:195–221

    Article  CAS  Google Scholar 

  4. Jensen LD, Cao R, Cao Y (2009) In vivo angiogenesis and lymphangiogenesis models. Curr Mol Med 9(8):982–991

    Article  PubMed  CAS  Google Scholar 

  5. Loi M, Di Paolo D, Becherini P, Zorzoli A, Perri P, Carosio R, Cilli M, Ribatti D, Brignole C, Pagnan G, Ponzoni M, Pastorino F (2011) The use of the orthotopic model to validate antivascular therapies for cancer. Int J Dev Biol 55:547–555

    Article  PubMed  CAS  Google Scholar 

  6. Cimpean A-C, Ribatti D, Raica M (2011) A brief history of angiogenesis assays. Int J Dev Biol 55:377–382

    Article  PubMed  Google Scholar 

  7. Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41(2):391–394

    Article  PubMed  CAS  Google Scholar 

  8. Ribatti D, Conconi MT, Nussdorfer GG (2007) Nonclassic endogenous novel regulators of angiogenesis. Pharmacol Rev 59(2):185–205

    Article  PubMed  CAS  Google Scholar 

  9. Vargas A, Zeisser-Labouebe M, Lnge N, Gurny R, Delie F (2007) The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliv Rev 59(11):1162–1176

    Article  PubMed  CAS  Google Scholar 

  10. Mousa SS, Mousa SA (2005) Effect of resveratrol on angiogenesis and platelet/fibrin-­accelerated tumor growth in the chick chorioallantoic membrane model. Nutr Cancer 52(1):59–65

    Article  PubMed  CAS  Google Scholar 

  11. Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M, Aljada A, Duskin E, Davis FB, Lin HY, Davis PJ (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190

    Article  PubMed  CAS  Google Scholar 

  12. Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  PubMed  CAS  Google Scholar 

  13. Davis PJ, Davis FB, Mousa SA (2009) Thyroid hormone-induced angiogenesis. Curr Cardiol Rev 5:12–16

    Article  PubMed  CAS  Google Scholar 

  14. Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY (2011) Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51:99–115

    Article  PubMed  CAS  Google Scholar 

  15. 15.Lin HY, Davis FB, Gordinier JK, Martino LJ, Davis PJ (1999) Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am J Physiol 276:C1014–C1024

    Google Scholar 

  16. Tobia C, De Sena G, Presta M (2011) Zebrafish embryo, a tool to study tumor angiogenesis. Int J Dev Biol 55(4–5):505–509

    Article  PubMed  CAS  Google Scholar 

  17. Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400

    Article  PubMed  Google Scholar 

  18. Langenkamp E, Molema G (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res 335(1):205–222

    Article  PubMed  CAS  Google Scholar 

  19. Yalcin M, Lin HY, Sudha T, Bharali DJ, Meng R, Tang HY, Davis FB, Stain SC, Davis PJ, Mousa SA (2013) Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles. Horm Cancer. doi:10.1007/s12672-0137-y

  20. Powell JA, Mohamed SN, Kerr JS, Mousa SA (2000) Antiangiogenesis efficacy of nitric oxide donors. J Cell Biochem 80(1):104–114

    Article  PubMed  CAS  Google Scholar 

  21. Nicosia RF, Otinetti A (1990) Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin and plasma clot. In Vitro Cell Dev Biol 26(2):119–128

    Article  CAS  Google Scholar 

  22. Zhu WH, Nicosia RF (2002) The thin prep rat aortic ring assay: a modified method for the characterization of angiogenesis in whole mounts. Angiogenesis 5(1–2):81–86

    Article  PubMed  CAS  Google Scholar 

  23. Mousa SA, O’Connor L, Davis FB, Davis PJ (2006) Proangiogenesis action of the thyroid hormone analog 3, 5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 147(4):1602–1607

    Article  PubMed  CAS  Google Scholar 

  24. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107(4):1589–1598

    Article  PubMed  CAS  Google Scholar 

  25. Arnaoutva I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12(3):267–274

    Article  Google Scholar 

  26. Donovan D, Brown NJ, Bishop ET, Lewis CE (2001) Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4(2):113–121

    Article  PubMed  CAS  Google Scholar 

  27. Phillips PG, Birnby LM, Narendran A, Milonovich WL (2001) Nitric oxide modulates capillary formation at the endothelial cell-tumor cell interface. Am J Physiol 281:278–290

    Google Scholar 

  28. Phillips PG, Birnby L (2004) Nitric oxide modulates Caveolin-1 (Cav-1) and MMP-9 expression and distribution at the endothelial cell/tumor cell interface. Am J Physiol Lung Cell Mol Physiol 286:L1055–1065

    Article  PubMed  CAS  Google Scholar 

  29. Lincoln DW II, Phillips PG, Bove K (2003) Estrogen-induced Ets-1 promotes capillary formation in an in vitro tumor angiogenesis model. Breast Cancer Res Treat 78:167–178

    Article  PubMed  CAS  Google Scholar 

  30. Hetheridge C, Mavria G, Mellor H (2011) Uses of the in vigor endothelial-fibroblast organotypic co-culture assay in angiogenesis research. Biochem Soc Trans 39(6):1597–1600

    Article  PubMed  CAS  Google Scholar 

  31. Wessels JT, Busse AC, Mahrt J, Dulin C, Grabbe E, Mueller GA (2007) In vivo imaging in experimental preclinical tumor research—a review. Cytometry A 71(8):542–549

    PubMed  CAS  Google Scholar 

  32. Colman RW, Jameson BA, Lin Y, Johnson D, Mousa SA (2000) Domain 5 of high molecular weight kininogen (kininostatin) downregulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 95(2):543–560

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mousa, S.A., Davis, P.J. (2013). Angiogenesis Assays: An Appraisal of Current Techniques. In: Mousa, S., Davis, P. (eds) Angiogenesis Modulations in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6467-5_1

Download citation

Publish with us

Policies and ethics