Skip to main content

The Strategic Use of Venom by Spiders

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Understanding the behaviors by which animals deploy their venoms has been largely neglected compared to other aspects of the evolution and biology of venomous organisms and their venoms. Yet, behavior has long been recognized as a pacemaker for the evolution of morphological, ecological, life history, and other traits, in large part because behavioral responses can expose organisms to or protect them from novel selection pressures. The importance of behavior is especially evident in that venom most often functions through a behavioral act that generates a wound in a target animal through which the toxic secretion must be introduced. As a limited and costly commodity, venom should be deployed strategically and judiciously by those animals that possess it. The chapter summarizes the major aspects of adaptive venom use in animals, and highlights the best documented examples of strategic venom deployment among spiders. These animals, like other venomous taxa, exhibit four major behavioral strategies. First, they are often highly selective when using their venom, discharging it only under certain conditions. Second, they can modulate the quantity of venom they expend in both predatory and defensive contexts, delivering multiple bites or variable quantities within individual doses. Third, at least one study suggests that spiders possess venom gland heterogeneity and therefore deliver varying venom composition with successive venom expulsions. Finally, some evidence suggests that spiders can strategically target the delivery of their weapon at a particularly vulnerable region of their target. Collectively, the evidence suggests a common theme among spiders and other venomous animals for economization and optimization of venom deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beaman KR, Hayes WK. Rattlesnakes: research trends and annotated checklist. In: Hayes WK, Beaman KR, Cardwell MD, Bush SP, editors. The biology of rattlesnakes. Loma Linda: Loma Linda University Press; 2008.

    Google Scholar 

  • Boeve JL. Injection of venom into an insect prey by the free hunting spider Cupiennius salei (Araneae, Ctenidae). J Zool. 1994;234:165–75.

    Article  Google Scholar 

  • Boeve JL, Meier C. Spider venom and ecoethological implications – a simple mathematical model. Ecol Model. 1994;73(1–2):149–57.

    Article  Google Scholar 

  • Boeve JL, Kuhn-Nentwig L, Keller S, Nentwig W. Quantity and quality of venom released by a spider (Cupiennius salei, Ctenidae). Toxicon. 1995;33(10):1347–57.

    Article  CAS  PubMed  Google Scholar 

  • Bücherl W. Spiders. In: Bücherl W, Buckley EE, editors. Venomous animals and their venoms, Venomous invertebrates, vol. III. New York: Academic; 1971.

    Google Scholar 

  • Campon FF. Group foraging in the colonial spider Parawixia bistriata (Araneidae): effect of resource levels and prey size. Anim Behav. 2007;74:1551–62.

    Article  Google Scholar 

  • Carlin NF, David GS. The “bouncer” defense of Odontomachus ruginodis and other Odontomachine ants (Hymenoptera: Formicidae). Psyche. 1989;96(1–2):1–19.

    Article  Google Scholar 

  • Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29.

    Article  PubMed  Google Scholar 

  • Celerier ML, Paris C, Lange C. Venom of an aggressive African Theraphosidae (Scodra griseipes): milking the venom, a study of its toxicity and its characterization. Toxicon. 1993;31(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  • Corning PA. Evolution ‘on purpose’: how behaviour has shaped the evolutionary process. Biol J Linn Soc. 2014;112(2):242–60.

    Article  Google Scholar 

  • Cuthill IC, Houston AI. Managing time and energy. In: Krebs JR, Davies NB, editors. Behavioural ecology. Oxford: Blackwell; 1997.

    Google Scholar 

  • Djieto-Lordon C, Orivel J, Dejean A. Predatory behavior of the African ponerine ant Platythyrea modesta (Hymenoptera: Formicidae). Sociobiology. 2001;38(3A):303–15.

    Google Scholar 

  • Duckworth RA. The role of behavior in evolution: a search for mechanism. Evol Ecol. 2009;23(4):513–31.

    Article  Google Scholar 

  • Dutertre S, Jin AH, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RJ. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014;5:3521, doi: 10.1038/ncomms4521.

    Google Scholar 

  • Edmunds MC, Sibly RM. Optimal sting use in the feeding behavior of the scorpion Hadrurus spadix. J Arachnol. 2010;38(1):123–5.

    Article  Google Scholar 

  • Fink LS. Venom spitting by the Green Lynx spider, Peucetia viridans (Araneae, Oxyopidae). J Arachnol. 1984;12(3):372–3.

    Google Scholar 

  • Foelix RF. Biology of the spiders. New York: Oxford University Press; 1996.

    Google Scholar 

  • Freyvogel TA, Honegger CG, Maretic Z. On the biology and toxicity of the East African spider Pterinochilus spec. Acta Trop. 1968;25(3):217–55.

    CAS  PubMed  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons JW, Dorcas ME. Defensive behavior of cottonmouths (Agkistrodon piscivorus) toward humans. Copeia. 2002;1:195–8.

    Article  Google Scholar 

  • Gilbert C, Rayor LS. Predatory behavior of spitting spiders (Araneae, Scytodidae) and the evolution of prey wrapping. J Arachnol. 1985;13(2):231–41.

    Google Scholar 

  • Grinsted L, Pruitt JN, Settepani V, Bilde T. Individual personalities shape task differentiation in a social spider. Proc R Soc B Biol Sci. 2013;280(1767):20131407, doi:10.1098/rspb.2013.1407 .

    Google Scholar 

  • Haight KL. Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insect Soc. 2006;53(1):32–6.

    Article  Google Scholar 

  • Harwood RH. Predatory behavior of Argiope aurantia (Lucas). Am Midl Nat. 1974;91(1):130–9.

    Article  Google Scholar 

  • Hayes WK. Prey-handling and envenomation strategies of Prairie Rattlesnakes (Crotalus v. viridis) feeding on mice and sparrows. J Herpetol. 1992;26(4):496–9.

    Article  Google Scholar 

  • Hayes WK. Effects of hunger on striking, prey-handling, and venom expenditure of Prairie Rattlesnakes (Crotalus v. viridis). Herpetologica. 1993;49(3):305–10.

    Google Scholar 

  • Hayes WK. The snake venom-metering controversy: levels of analysis, assumptions, and evidence. In: Hayes WK, Beaman KR, Cardwell MD, Bush SP, editors. The biology of rattlesnakes. Loma Linda: Loma Linda University Press; 2008.

    Google Scholar 

  • Hayes WK, Herbert SS, Rehling GC, Bennaro JF. Factors that influence venom expenditure in viperids and other snake species during predatory and defensive contexts. In: Schuett GW, Hoggren M, Douglas ME, Greene HW, editors. Biology of the vipers. Eagle Mountain: Eagle Mountain Publishers; 2002.

    Google Scholar 

  • Heatwole H. Defensive behaviour of some Panamanian scorpions. Caribb J Sci. 1967;7(1–2):15–7.

    Google Scholar 

  • Herzig V. Ontogenesis, gender, and molting influence the venom yield in the spider Coremiocnemis tropix (Araneae, Theraphosidae). J Venom Res. 2010;1:76–83.

    PubMed  PubMed Central  Google Scholar 

  • Herzig V, Khalife AA, Chong Y, Isbister GK, Currie BJ, Churchill TB, Horner S, Escoubas P, Nicholson GM, Hodgson WC. Intersexual variations in Northern (Missulena pruinosa) and Eastern (M. bradleyi) mouse spider venom. Toxicon. 2008;51(7):1167–77.

    Article  CAS  PubMed  Google Scholar 

  • Hostettler S, Nentwig W. Olfactory information saves venom during prey-capture of the hunting spider Cupiennius salei (Araneae: Ctenidae). Funct Ecol. 2006;20(2):369–75.

    Article  Google Scholar 

  • Isbister GK. Mouse spider bites (Missulena spp.) and their medical importance: a systematic review. Med J Aust. 2004;180(5):225–7.

    PubMed  Google Scholar 

  • Jackson RR, Cross FR. Spider cognition. In: Casas J, editor. Advances in insect physiology, Spider physiology and behaviour – behaviour, vol. 41. London: Academic\Elsevier Science; 2011.

    Google Scholar 

  • King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. In: Berenbaum MR, editor. Annual review of entomology, vol. 58. Palo Alto: Annual Reviews; 2013.

    Google Scholar 

  • Kuhn-Nentwig L, Stocklin R, Nentwig W. Venom composition and strategies in spiders: is everything possible? In: Casas J, editor. Advances in insect physiology. Burlington: Academic; 2011.

    Google Scholar 

  • Lamarck JB. Zoological philosophy (Elliot H, trans.). Chicago: University of Chicago Press; 1984 [1809].

    Google Scholar 

  • Libersat F, Gal R. Wasp voodoo rituals, venom-cocktails, and the zombification of cockroach hosts. Integr Comp Biol. 2014;54(2):129–42.

    Article  CAS  PubMed  Google Scholar 

  • Malli H, Imboden H, Kuhn-Nentwig L. Quantifying the venom dose of the spider Cupiennius salei using monoclonal antibodies. Toxicon. 1998;36(12):1959–69.

    Article  CAS  PubMed  Google Scholar 

  • Malli H, Kuhn-Nentwig L, Imboden H, Nentwig W. Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. J Exp Biol. 1999;202(15):2083–9.

    CAS  PubMed  Google Scholar 

  • Malli H, Kuhn-Nentwig L, Imboden H, Moon MJ, Wyler T. Immunocytochemical localization and secretion process of the toxin CSTX-1 in the venom gland of the wandering spider Cupiennius salei (Araneae: Ctenidae). Cell Tissue Res. 2000;299(3):417–26.

    Article  CAS  PubMed  Google Scholar 

  • Maretic Z. Spider venoms and their effect. In: Nentwig W, Aitchison-Benell CW, editors. Ecophysiology of spiders. Berlin: Springer; 1987.

    Google Scholar 

  • McCormick SJ, Polis GA. Prey, predators, and parasites. In: Polis GA, editor. The biology of scorpions. Stanford: Stanford University Press; 1990.

    Google Scholar 

  • Mebs D. Venomous and poisonous animals: a handbook for biologists, toxicologists and toxinologists, physicians and pharmacists. Boca Raton: CRC Press; 2002.

    Google Scholar 

  • Menzel R. Learning, memory, and cognition: animal perspectives. In: Galizia CG, Lledo PM, editors. Neurosciences–from molecule to behavior: a university textbook. Heidelberg: Springer; 2013.

    Google Scholar 

  • Morgenstern D, King GF. The venom optimization hypothesis revisited. Toxicon. 2013;63:120–8.

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern D, Hamilton B, Sher D, Jones A, Mattius G, Zlotkin E, Venter D, King GF. The bio-logic of venom complexity. Toxicon. 2012;60(2):241–2.

    Article  CAS  Google Scholar 

  • Morse DH. Location of successful strikes on prey by juvenile crab spiders Misumena vatia (Araneae, Thomisidae). J Arachnol. 1999;27(1):171–5.

    Google Scholar 

  • Natural History Museum Bern. World spider catalog [Internet]. 2015 [cited 3 Mar 2015]. Available from: http://wsc.nmbe.ch

  • Nelsen DR, Kelln W, Hayes WK. Poke but don’t pinch: risk assessment and venom metering in the western black widow spider, Latrodectus hesperus. Anim Behav. 2014a;89:107–14.

    Article  Google Scholar 

  • Nelsen DR, Nisani Z, Cooper AM, Fox GA, Gren ECK, Corbit AG, Hayes WK. Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them. Biol Rev. 2014b;89(2):450–65.

    Article  PubMed  Google Scholar 

  • Nentwig W, Kuhn-Nentwig L. Main components of spider venoms. In: Nentwig W, editor. Spider ecophysiology. Heidelberg: Springer; 2013.

    Chapter  Google Scholar 

  • Nisani Z, Hayes WK. Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering. Anim Behav. 2011;81(3):627–33.

    Article  Google Scholar 

  • Parks J, Stoecker WV, Kristensen C. Observations on Loxosceles reclusa (Araneae, Sicariidae) feeding on short-horned grasshoppers. J Arachnol. 2006;34(1):221–6.

    Article  Google Scholar 

  • Pekar S, Toft S. Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol Rev. 2014. doi:10.1111/brv.12133.

    PubMed  Google Scholar 

  • Pekar S, Sedo O, Liznarova E, Korenko S, Zdrahal Z. David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften. 2014;101(7):533–40.

    Article  CAS  PubMed  Google Scholar 

  • Perret BA. Determination of amount of venom released by striking tarantulas. J Georgia Entomol Soc. 1977a;12(4):329–33.

    Google Scholar 

  • Perret BA. Venom regeneration in tarantula spiders—I: analysis of venom produced at different time intervals. Comp Biochem Physiol A: Mol Integr Physiol. 1977b;56(4):607–13.

    Article  Google Scholar 

  • Perry CJ, Barron AB, Cheng K. Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdiscip Rev Cogn Sci. 2013;4(5):561–82.

    Article  PubMed  Google Scholar 

  • Pollard SD. The feeding strategy of a crab spider, Diaea sp. indet (Araneae, Thomisidae): post-capture decision rules. J Zool. 1990;222:601–15.

    Article  Google Scholar 

  • Quintero-Hernandez V, Ortiz E, Rendon-Anaya M, Schwartz EF, Becerril B, Corzo G, Possani LD. Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon. 2011;58(8):644–63.

    Article  CAS  PubMed  Google Scholar 

  • Rezac M, Pekar S, Lubin Y. How oniscophagous spiders overcome woodlouse armour. J Zool. 2008;275(1):64–71.

    Article  Google Scholar 

  • Robinson MH. Predatory behavior of Argiope argentata (Fabricius). Am Zool. 1969;9(1):161–73.

    Article  Google Scholar 

  • Robinson MH, Olazarri J. Units of behavior and complex sequences in the predatory behavior of Argiope argentata (Fabricius): (Araneae: Araneidae). Washington: Smithsonian Institution Press; 1971.

    Google Scholar 

  • Robinson MH, Mirick H, Turner O. The predatory behavior of some araneid spiders and the origin of immobilization wrapping. Psyche. 1969;76:487–501.

    Article  Google Scholar 

  • Schenberg S, Pereira-Lima FA. Venoms of ctenidae. In: Bettini S, editor. Arthropod venoms, Handbook of experimental pharmacology, vol. 48. Berlin: Springer; 1978. p. 215–45.

    Google Scholar 

  • Schenberg S, Pereira-LIma FA, Nogueira-Schiripa LN, Nagamori A. Unparalleled regeneration of snake venom components in successive milkings. Toxicon. 1970;8(2):152.

    Google Scholar 

  • Schmidt JO. Hymenopteran venoms: striving toward the ultimate defense against vertebrates. In: Evans DL, Schmidt JO, editors. Insect defenses: adaptive mechanisms and strategies of prey and predators. Albany: State University of New York; 1990.

    Google Scholar 

  • Shettleworth SJ. Fundamentals of comparative cognition. New York: Oxford University Press; 2013.

    Google Scholar 

  • Steiner AL. Stinging behaviour of solitary wasps. In: Piek T, editor. Venoms of the hymenoptera. London: Academic; 1986.

    Google Scholar 

  • Suter RB, Stratton GE. Predation by spitting spiders: elaborate venom gland, intricate delivery system. In: Nentwig W, editor. Spider ecophysiology. Heidelberg: Springer; 2012.

    Google Scholar 

  • Wcislo WT. Behavioral environments and evolutionary change. Annu Rev Ecol Syst. 1989;20:137–69.

    Article  Google Scholar 

  • Wigger E, Kuhn-Nentwig L, Nentwig W. The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon. 2002;40(6):749–52.

    Article  CAS  PubMed  Google Scholar 

  • Willey MB, Johnson MA, Adler PH. Predatory behavior of the basilica spider, Mecynogea lemniscata (Araneae, Araneidae). Psyche. 1992;99:153–68.

    Article  Google Scholar 

  • Wolf M, Weissing FJ. Animal personalities: consequences for ecology and evolution. Trends Ecol Evol. 2012;27(8):452–61.

    Article  PubMed  Google Scholar 

  • Wullschleger B, Nentwig W. Influence of venom availability on a spider’s prey-choice behaviour. Funct Ecol. 2002;16(6):802–7.

    Article  Google Scholar 

  • Zobel-Thropp PA, Correa SM, Garb JE, Binford GJ. Spit and venom from scytodes spiders: a diverse and distinct cocktail. J Proteome Res. 2014;13(2):817–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allen M. Cooper or David R. Nelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Cooper, A.M., Nelsen, D.R., Hayes, W.K. (2017). The Strategic Use of Venom by Spiders. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_13

Download citation

Publish with us

Policies and ethics