Skip to main content

Forests, Carbon Pool, and Timber Production

  • Chapter
  • First Online:
Ecosystem Services and Carbon Sequestration in the Biosphere

Abstract

Forests play an important role in the mitigation of climate change, and store substantial amounts of carbon (C). The living biomass contains 363 Pg C and the soils an additional 426 Pg C. Given that forests annually exchange about sevenfold more carbon dioxide (CO2) with the atmosphere by photosynthesis and respiration than is emitted by burning of fossil fuels (currently 9.1 Pg C), the role of forests in the global C cycle is significant. Land-use change contributes 10 % or 1.1 Pg C to the annual CO2-emissions and leads to significant changes in the C pool. Presently, the temperate forests are a C sink because the forest area increases annually by between 0 and 0.5 %, and the productivity of forests is increasing. Deforestation in the tropical zone is a source of CO2. Ecosystem disturbances such as storm damages and insect infestations are causing economic loss, and destruction of forests leads to the loss of numerous ecosystem services. Disturbances are partially a component of natural ecosystem dynamics, partially they are triggered by climate-change effects, and partly by changes in forest management. The different effects are often difficult to disentangle. Foresters respond to climate change by developing strategies of adaptative forest management. The opinion on successful concepts is still unconsolidated, both due to differences in the anticipation of the extent of climate change, and due to different opinions on the resilience of different forest types. Simulation models and manipulative experiments are important tools for the development of strategies of adaptive forest management. With respect to the role of forests in the global C cycle two opposing opinions exist. Firstly, it is possible to focus on C sequestration in standing forests, alternatively, forest biomass can be intensively used in order to provide timber for the substitution of other materials, and forest biomass for energy. From a forester’s perspective the active management of forests offers more opportunities than management towards old-growth forests with maximized C stocks in the standing biomass. Intensive forest management needs to follows the principles of sustainability. This paradigm is instrumental in forest politics. The use of criteria and indicators help to approximate and maintain a desired status of forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann G, Schennach R, Kessler J, Maier B, Terzer S (2010) Handbuch der Vorarlberger Wald-gesellschaften – Gesellschaftsbeschreibungen und waldbaulicher Leitfaden. Landesregierung Vorarlberg

    Google Scholar 

  • Anderson RG, Canadell JG, Randerson JT, Jackson RB, Hungate BA, Baldocchi DD, Ban-Weiss GA, Bonan GB, Caldeira K, Cao L, Diffenbaugh NS, Gurney KR, Kueppers LM, Law BE, Luyssaert S, O’Halloran TL (2010) Biophysical considerations in forestry for climate protection. Front Ecol Environ 9(3):174–182

    Article  Google Scholar 

  • Assmann E (1961) Waldertragskunde – Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, München

    Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492

    Article  Google Scholar 

  • Beck W (2010) Auswirkungen von Trockenheit und Hitze auf den Waldzustand in Deutschland – waldwachstumskundliche Ergebnisse der Studie im Auftrag des BMEL. In: DVFFA– Sektion Ertragskunde, Jahrestagung, 2010

    Google Scholar 

  • Beniston M, Stoffel M, Hill M (2011) Impacts of climatic change on water and natural hazards in the Alps: can current water governance cope with future challenges? Examples from the European ACQWA project. Environ Sci Policy 14(7):734–743

    Google Scholar 

  • Blumenthal D, Mitchell CE, Pyšek P, Jarošík V (2009) Synergy between pathogen release and resource availability in plant invasion. Proc Natl Acad Sci U S A 106(19):7899–7904

    Article  PubMed  CAS  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Bronson DR, Gower ST, Tanner M, Linder S, Van Herk I (2008) Response of soil surface CO2 flux in a boreal forest to ecosystem warming. Glob Change Biol 14:856–867

    Article  Google Scholar 

  • Büchsenmeister R (2011) Waldinventur 2007/09: Betriebe und Bundesforste nutzen mehr als den Zuwachs. BFW-Praxisinformation 24:6–9

    Google Scholar 

  • Butterbach-Bahl K, Nemitz E, Zaehle S (2011) Nitrogen as a threat to the European greenhouse balance. In: The European nitrogen assessment, chap 19. Cambridge University Press, Cambridge, pp 434–462

    Google Scholar 

  • Calfapietra C, Ainsworth EA, Beier C, Angelis PD, Ellsworth DS, Godbold DL, Hendrey GR, Hickler T, Hoosbeek MR, Karnosky DF, King J, Körner C, Leakey AD, Lewin KF, Liberloo M, Long SP, Lukac M, Matyssek R, Miglietta F, Nagy J, Norby RJ, Oren R, Percy KE, Rogers A, Mugnozza GS, Stitt M, Taylor G, Ceulemans R (2010) Challenges in elevated CO2 experiments on forests. Trends Plant Sci 15(1):5–10

    Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogé J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, Noblet ND, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  PubMed  CAS  Google Scholar 

  • Davidson E, Nepstad D, Yoko Ishida F, Brando P (2008) Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Change Biol 14:2582–2590

    Article  Google Scholar 

  • Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox P, Dickinson R, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias P, Wofsy S, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, pp 500–587

    Google Scholar 

  • Dixon R, Brown S, Houghton R, Solomon A, Trexler M, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Dodds KJ, Orwig DA (2011) An invasive urban forest pest invades natural environments – Asian longhorned beetle in northeastern US hardwood forests. Can J For Res 41(9):1729–1742

    Article  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks? A meta-analysis. Global Change Biol 17(4):1658–1670

    Google Scholar 

  • Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M (2006) Can forest management based on natural disturbances maintain ecological resilience? Can J For Res 36(9):2285–2299

    Article  Google Scholar 

  • Eglin T, Ciais P, Piao SL, Barre P, Bellassen V, Cadule P, Chenu C, Gasser T, Koven C, Reichstein M, Smith P (2010) Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B 62(5):700–718

    Article  Google Scholar 

  • Engesser R, Forster B, Meier F, Wermlinger B (2008) Forstliche Schadorganismen im Zeichen des Klimawandels. Schweiz Z For 159(10):344–351

    Article  Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520

    Article  PubMed  CAS  Google Scholar 

  • Food and Agricultural Organization of the United Nations (ed) (2006) Global forest resources assessment 2005. Progress towards sustainable forest management, FAO forestry papers, vol 147. FAO, Rome

    Google Scholar 

  • Franklin JF, Spies TA, Pelt RV, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen J (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage 155:399–423

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Quéré CL (2010) Update on CO2 emissions. Nat Geosci 3:811–812

    Article  CAS  Google Scholar 

  • Führer E (2000) Forest functions, ecosystem stability and management. For Ecol Manage 132:29–38

    Article  Google Scholar 

  • Gange AC, Gange EG, Mohammad AB, Boddy L (2011) Host shifts in fungi caused by climate change? Fungal Ecol 4(2):184–190

    Article  Google Scholar 

  • Gardiner B, Blennow K, Carnus JM, Fleischer P, Ingemarson F, Landmann G, Lindner M, Marzano M, Nicoll B, Orazio C, Peyron JL, Reviron MP, Schelhaas MJ, Schuck A, Spielmann M, Usbeck T (2010) Destructive storms in European forests: past and forthcoming impacts. EFI, Joensuu

    Google Scholar 

  • Hagedorn F, Martin M, Rixen C, Rusch S, Bebi P, Zürcher A, Siegwolf RTW, Wipf S, Escape C, Roy J, Hättenschwiler S (2010) Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline. Biogeochemistry 97:7–19

    Article  CAS  Google Scholar 

  • Hanewinkel M, Breidenbach J, Neeff T, Kublin E (2008) Seventy-seven years of natural disturbances in a mountain forest area – the influence of storm, snow, and insect damage analysed with a long-term time series. Can J For Res 38(8):2249–2261

    Article  Google Scholar 

  • Harmon ME (2001) Carbon sequestration in forests. J For 4:24–29

    Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  PubMed  CAS  Google Scholar 

  • Heinimann HR (2010) A concept in adaptive ecosystem management–an engineering perspective. For Ecol Manage 259(4):848–856

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–486

    Article  PubMed  CAS  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Holling CB (1978) Adaptive environmental assessment and management. John Wiley & Sons, London

    Google Scholar 

  • Houghton R (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA

    Google Scholar 

  • IPCC (2011) Summary for policymakers. In: Intergovernmental Panel on Climate Change special report on managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Jarvis P, Linder S (2000) Constraints to growth of boreal forests. Nature 405:904–905

    Article  PubMed  CAS  Google Scholar 

  • Jonášová M, Vávrová E, Cudlín P (2010) Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. For Ecol Manage 259(6):1127–1134

    Article  Google Scholar 

  • Kapeller S, Lexer MJ, Geburek T, Hiebl J, Schueler S (2012) Intraspecific variation in climate response of Norway spruce in the eastern alpine range: selecting appropriate provenances for future climate. For Ecol Manage 271:46–57

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28(27–28):3016–3034

    Article  Google Scholar 

  • Karhu K, Wall A, Vanhala P, Liski J, Esala M, Regina K (2011) Effects of afforestation and deforestation on boreal soil carbon stocks – comparison of measured C stocks with Yasso07 model results. Geoderma 164(1–2):33–45

    Article  CAS  Google Scholar 

  • Körner C (2003) Slow in, rapid out – carbon flux studies and Kyoto targets. Science 300:1242–1243

    Article  PubMed  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1363

    Article  PubMed  Google Scholar 

  • Kump LR (2011) The last great global warming. Sci Am 7:57–61

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  PubMed  CAS  Google Scholar 

  • Kurz W, Dymond C, White T, Stinson G, Shaw C, Rampley G, Smyth C, Simpson B, Neilson E, Trofymow J, Metsaranta J, Apps M (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220(4):480–504

    Google Scholar 

  • Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16(1):439–453

    Article  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  • Lindner M, Karjalainen T (2007) Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. Eur J For Res 126:149–156

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259(4):698–709

    Article  Google Scholar 

  • Lonsdale D, Gibbs J (2002) Effects of climate change on fungal diseases of trees, Bulletin, vol 125, chap 7. Forestry Commission Publications, Stockport

    Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    Article  PubMed  Google Scholar 

  • Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:214–215

    Article  Google Scholar 

  • Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, Van Der Werf GR, Janssens IA, Members of the CARBOEUROPE-IP SYNTHESIS TEAM (2010) The European carbon balance. Part 3: forests. Glob Change Biol 16(5):1429–1450

    Article  Google Scholar 

  • Malmsheimer R, Bowyer J, Fried J, Gee E, Izlar R, Miner R, Munn I, Oneil E, Stewart W (2011) Managing forests because carbon matters: integrating energy, products, and land management policy. J For (Suppl) 109(75):S7–S51

    Google Scholar 

  • Marañón Jiménez S (2011) Efecto del manejo de la madera quemada después de un incendio sobre el ciclo del carbono y nutrientes en un ecosistema de montaña mediterránea. PhD thesis, Universidad de Granada

    Google Scholar 

  • Mather A, Needle C (1998) The forest transition: a theoretical basis. Area 30(2):117–124

    Article  Google Scholar 

  • Matyas C (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45–54

    Article  Google Scholar 

  • Mayer H (1976) Gebirgswaldbau – Schutzwaldpflege. Gustav Fischer, Stuttgart

    Google Scholar 

  • Mayer H (1984) Waldbau auf soziologisch-ökologischer Grundlage. G. Fischer, Stuttgart

    Google Scholar 

  • MCPFE (2003) Ministerial conference on the protection of forests in Europe. Improved pan-­European indicators for sustainable forest management as adopted by the MCPFE expert level meeting, 7–8 Oct 2002, Vienna. http://www.foresteurope.org/documentos/improved_indicators.pdf

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458. doi:10.1038/nature0801

  • Melillo J, Steudler P, Aber J, Newkirk K, Lux H, Bowles F, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle. Feedbacks to the climate system. Science 298:2173–2176

    Article  PubMed  CAS  Google Scholar 

  • Muhr J, Borken W (2009) Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. J Geophy Res 114(G04):023

    Google Scholar 

  • Nabuurs G, Hengeveld G, van der Werf D, Heidema A (2010) European forest carbon balance assessed with inventory based methods – an introduction to a special section. For Ecol Manage 260(3):239–240

    Article  Google Scholar 

  • Niinistö SM, Silvola J, Kellomäki S (2004) Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming. Glob Change Biol 10:1363–1376

    Article  Google Scholar 

  • Norby R, Zak D (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203

    Article  Google Scholar 

  • O’Neill GA, Hamann A, Wang T (2008) Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution. J Appl Ecol 45:1040–1049

    Article  Google Scholar 

  • Oliver CD, Larsen BC (1990) Forest stand dynamics. McGraw-Hill Inc., New York

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala S, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  PubMed  CAS  Google Scholar 

  • Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2011) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change 2:2–4

    Article  Google Scholar 

  • Petit R, Hu F, Dick C (2008) Forests of the past: a window to future changes. Science 320:1450–1452

    Article  PubMed  CAS  Google Scholar 

  • Pongratz J, Reick CH, Raddatz T, Caldeira K, Claussen M (2011) Past land use decisions have increased mitigation potential of reforestation. Geophys Res Lett 38:L15,701

    Google Scholar 

  • Prietzel J, Bachmann S (2012) Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany. For Ecol Manage 269:134–148

    Article  Google Scholar 

  • Puettmann KJ, Coates KD, Messier C (2009) A critique of silviculture – managing for complexity. Island Press, Washington, D.C

    Google Scholar 

  • Pyšek P, Krvánek M, Jarosîk V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744

    Article  PubMed  Google Scholar 

  • Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci U S A 108(44):17,905–17,909

    Google Scholar 

  • Rehfeldt G, Ying C, Spittlehouse D, Hamilton D (1999) Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol Monogr 69:375–407

    Google Scholar 

  • Reick CH, Raddatz T, Pongratz J, Claussen M (2010) Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO2. Tellus B 62(5):329–336

    Article  Google Scholar 

  • Reif A, Aas G, Essl F (2011) Braucht der Wald in Zeiten der Klimaveränderung neue, nicht heimische Baumarten? – do forests need new, non-native species in times of climate change? Natur und Landschaft 86(6):256–260

    Google Scholar 

  • Rigling A, Brang P, Bugmann H, Kräuchi N, Wohlgemuth T, Zimmermann N (2008) Klimawandel als Prüfstein für die Waldbewirtschaftung. Schweiz Z For 159:316–325

    Article  Google Scholar 

  • Rodeghiero M, Heinemeyer A, Schrumpf M, Bellamy P (2009) Determination of soil carbon stocks and changes, chap 4. Cambridge University Press, Cambridge/New York, pp 49–74

    Google Scholar 

  • Russ W (2011) Mehr Wald in Österreich. BFW-Praxisinformation 24:3–5

    Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Schadauer K (1996) Growth trends in Austria. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard J (eds) Growth trends in European forests. Springer, Berlin, pp 275–289

    Chapter  Google Scholar 

  • Schils R, Kuikman P, Liski J, van Oijen M, Smith P, Webb J, Alm J, Somogyi Z, van den Akker J, Billett M, Emmett B, Evans C, Lindner M, Palosuo T, Bellamy P, Alm J, Jandl R, Hiederer R (2008) Review of existing information on the interrelations between soil and climate change. Alterra, Wageningen. http://ec.europa.eu/environment/soil/pdf/climsoil_report_dec_2008.pdf

  • Schindlbacher A, Zechmeister-Boltenstern S, Jandl R (2009) Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob Change Biol 15:901–913

    Article  Google Scholar 

  • Schindlbacher A, Wunderlich S, Borken W, Kitzler B, Zechmeister-Boltenstern S, Jandl R (2012) Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Glob Change Biol 18(7):2270–2279

    Article  Google Scholar 

  • Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single-tree storm damage – experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-­Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Schulze E, Schulze I (2010) Sustainable foresting: easier said than done. Science 327:957

    Article  PubMed  CAS  Google Scholar 

  • Seastedt T (2009) Traits of plant invaders. Nature 459:783–784

    Article  PubMed  CAS  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2011a) Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can J For Res 41(4):694–706

    Article  Google Scholar 

  • Seidl R, Schelhaas MJ, Lexer MJ (2011b) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17(9):2842–2852

    Article  Google Scholar 

  • Seppälä R, Buck A, Katila P (eds) (2009) Adaptation of forests and people to climate change. a global assessment report, IUFRO World Series, vol 22. IUFRO, Helsinki

    Google Scholar 

  • Shvidenko A, Barber CV, Persson R (2007) Forest and woodland systems, chap 21. Island Press, Washington, D.C., pp 585–621

    Google Scholar 

  • Smith WB, Miles PD, Perry CH, Pugh SA (2009) Forest resources of the United States, 2007. General technical report WO-78. U.S. Department of Agriculture, Forest Service, Washington Office

    Google Scholar 

  • Smith SM, Lowe JA, Bowerman NHA, Gohar LK, Huntingford C, Allen MR (2012) Equivalence of greenhouse-gas emissions for peak temperature limits. Nat Climate Change 2:535–538

    Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102(23):8245–8250

    Article  PubMed  CAS  Google Scholar 

  • Tollefson J (2012) Brazil set to cut forest protection. Nature 485:19

    Article  PubMed  CAS  Google Scholar 

  • Tomiczek C, Hoyer-Tomiczek U (2007) Der Asiatische Laubholzbockkäfer (Anoplophora glabripennis) und der Citrusbockkäfer (Anoplophora chinensis) in Europa – ein Situationsbericht. Forstschutz Aktuell 38:2–5

    Google Scholar 

  • Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) (2010) National forest inventories – pathways for common reporting. Springer, Heidelberg

    Google Scholar 

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Clim 96:117–131

    Article  Google Scholar 

  • Van Miegroet H, Olsson M (2011) Ecosystem disturbance and soil organic carbon – a review, chap 5. Wiley-Blackwell, Chichester, UK, pp 85–117

    Google Scholar 

  • van Oijen M, Jandl R (2004) Nitrogen fluxes in two Norway spruce stands in Austria: an analysis by means of process-based modelling. Aust J For Res 121:167–182

    Google Scholar 

  • Vesterdal L, Leifeld J, Poeplau C, Don A, van Wesemael B (2011) Land-use change effects on soil carbon stocks in temperate regions – development of carbon response functions, chap 3. Wiley-­Blackwell, Chichester, UK, pp 33–48

    Google Scholar 

  • Vuichard N, Ciais P, Belelli L, Smith P, Valentini R (2008) Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Glob Biogeochem Cycle 22:GB4018

    Article  Google Scholar 

  • Wang T, Hamann A, Yanchuk Y, O’Neill G, Aiken S (2006) Use of response functions in selecting lodgepole pine populations for future climates. Glob Change Biol 12:2404–2416

    Article  Google Scholar 

  • Wang G, Innes J, Lei J, Dai S, Wu S (2007) China’s forestry reforms. Science 318:1556–1557

    Article  PubMed  CAS  Google Scholar 

  • Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. Wiley, Chichester

    Book  Google Scholar 

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus – a review of recent research. For Ecol Manage 202:67–82

    Article  Google Scholar 

  • Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417

    Article  PubMed  CAS  Google Scholar 

  • Zianis D, Mukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4:63

    Google Scholar 

  • Zimmermann NE, Yoccoz NG, Edwards TC Jr, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci U S A 106:19,723–19,728

    Google Scholar 

Download references

Acknowledgements 

This paper is an output of the project, Management strategies to adapt Alpine Space forests to climate change risks (MANFRED), as part of the EU Interreg Alpine Space Programme. The data for the climate envelope of Norway spruce are derived from the Austrian National Forest Inventory and were evaluated by Nik Zimmermann, WSL, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Jandl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jandl, R., Schüler, S., Schindlbacher, A., Tomiczek, C. (2013). Forests, Carbon Pool, and Timber Production. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_6

Download citation

Publish with us

Policies and ethics