Skip to main content

Cognitive Guidelines for the Design and Evaluation of Early Mathematics Software: The Example of MathemAntics

  • Chapter
Reconceptualizing Early Mathematics Learning

Abstract

Thousands of educational applications are available for the latest touch screen devices. Unfortunately, quantity does not guarantee quality: most applications are limited in focus and do not promote conceptual knowledge. This chapter explores how cognitive psychology can inform the design and evaluation of software for early mathematics education so as to promote conceptual understanding, problem solving, and the excitement of learning. We propose six cognitive design principles that can exploit the new technological affordances available on the latest devices, particularly touch screen tablets. For each design principle, we outline important issues that software developers need to consider, and then we discuss examples of how cognitive principles can inform design. We also discuss two added benefits of mathematics software running on the new technology: the software can provide innovative approaches to the evaluation of learning and to basic cognitive research. We argue that when cognitive psychology shapes the development of software the results can be improved achievement, teaching, and testing. And a non-trivial added benefit can be that children will enjoy learning meaningful mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alibali, M. W. (1999). How children change their minds: strategy change can be gradual or abrupt. Developmental Psychology, 35, 127–145.

    Article  Google Scholar 

  • Barlow, A., & Harmon, Sh. E. (2012). Problem contexts for thinking about equality: an additional resource. Childhood Education, 88(2), 96–101.

    Article  Google Scholar 

  • Baroody, A. J. (2004). The developmental bases for early childhood number and operations standards. In D. H. Clements, J. Sarama, & A.-M. DiBiase (Eds.), Engaging young children in mathematics: standards for early childhood mathematics education (pp. 173–219). Mahwah: Erlbaum.

    Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41(6), 189–201.

    Article  Google Scholar 

  • Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2, 155–192.

    Article  Google Scholar 

  • Brown, J. S., & VanLehn, K. (1982). Towards a generative theory of “bugs”. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: a cognitive perspective (pp. 117–135). Hillsdale: Erlbaum.

    Google Scholar 

  • Brian, M. (2012). Apple: 1.5 million iPads are used in educational programs, with over 20,000 education apps [Web log post]. Retrieved January 19, 2012, from http://thenextweb.com/apple/2012/01/19/apple-1-5-million-ipads-in-use-in-educational-programs-offering-over-20000-education-apps/.

  • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273–293.

    Article  Google Scholar 

  • Butterworth, B. (1999). The mathematical brain. London: Macmillan.

    Google Scholar 

  • Butterworth, B., & Laurillard, D. (2010). Low numeracy and dyscalculia: identification and intervention. ZDM Mathematics Education, 42, 527–539.

    Article  Google Scholar 

  • Carpenter, T. P., & Moser, J. M. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education, 15, 179–202.

    Article  Google Scholar 

  • Chard, D. J., Baker, S. K., Clarke, B., Jung, J. K., Davis, K., & Smolkowski, K. (2008). Preventing early mathematics difficulties: the feasibility of a rigorous kindergarten mathematics curriculum. Learning Disability Quarterly, 31, 11–20.

    Google Scholar 

  • Chen, Z., & Klahr, D. (1999). All other things being equal: children’s acquisition of the control of variables strategy. Child Development, 70, 1098–1120.

    Article  Google Scholar 

  • Clearleft Limited (2010). Silverback (version 2.0) [computer application software]. Available from. http://silverbackapp.com/.

  • Clements, D. H., & Sarama, J. (2007). Early childhood mathematics learning. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 461–555). New York: Information Age.

    Google Scholar 

  • Clements, D. H., & Sarama, J. (2008). Experimental evaluation of the effects of a research based preschool mathematics curriculum. American Educational Research Journal, 45, 443–494.

    Article  Google Scholar 

  • Common Core State Standards Initiative (2010). Common Core State Standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf.

  • Cook, S. W., Yip, T., & Goldin-Meadow, S. (2012). Gestures, but not meaningless movements, lighten working memory load when explaining math. Language and Cognitive Processes, 27(4), 594–610.

    Article  Google Scholar 

  • Cordes, S., & Gelman, R. (2005). The young numerical mind: when does it count? In J. Campbell (Ed.), Handbook of mathematical cognition (pp. 127–142). London: Psychology Press.

    Google Scholar 

  • Cross, C. T., Woods, T. A., & Schweingruber, H. (Eds.) (2009). Mathematics learning in early childhood: paths toward excellence and equity. Washington: National Academy Press.

    Google Scholar 

  • Cunha, F., Heckman, J., Lochner, L., & Masterov, D. (2006). Interpreting the evidence on life cycle skill formation. In E. Hanushek & F. Welch (Eds.), Handbook of the economics of education (pp. 307–451). North Holland: Elsevier.

    Google Scholar 

  • Dewey, J. (1976). The child and the curriculum. In J. A. Boydston (Ed.), John Dewey: the middle works, 1899–1924. Vol. 2: 1902–1903 (pp. 273–291). Carbondale: Southern Illinois University Press.

    Google Scholar 

  • Diamond, A. (2008). Cognitive control (executive functions) in young children: relevance of what we know to what can be done to help children. In Emotion regulation, children’s brains and learning, plenary session presented at head start’s ninth national research conference, Washington.

    Google Scholar 

  • Dick, A., Goldin-Meadow, S., Solodkin, A., & Small, S. (2012). Gesture in the developing brain. Developmental Science, 15(2), 165–180.

    Article  Google Scholar 

  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446.

    Article  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8(10), 307–314.

    Article  Google Scholar 

  • Fisher, C. E. (2012). Guidelines for successful mobile interactive apps for children. Paper presented at the annual meeting of game developer conference, San Francisco, CA.

    Google Scholar 

  • Fuson, K. C. (1992a). Research on learning and teaching addition and subtraction of whole numbers. In G. Leinhardt, R. T. Putnam, & R. A. Hattrup (Eds.), The analysis of arithmetic for mathematics teaching (pp. 53–187). Hillsdale: Erlbaum.

    Google Scholar 

  • Fuson, K. C. (1992b). Research on whole number addition and subtraction. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 243–275). New York: Macmillan.

    Google Scholar 

  • Fuson, K. C., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the number word sequences. In C. Brainerd (Ed.), Progress in cognitive development: Vol1. Children’s logical and mathematical cognition (pp. 33–92). New York: Springer.

    Chapter  Google Scholar 

  • Gelman, R. (1993). A rational-constructivist account of early learning about numbers and objects. In D. Medin (Ed.), Learning and motivation (Vol. 30, pp. 61–96). New York: Academic Press.

    Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge: Harvard University Press.

    Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1986). The child’s understanding of number. Cambridge: Harvard University Press.

    Google Scholar 

  • Gelman, R., Massey, C., & McManus, M. (1991). Characterizing supporting environments for cognitive development: lessons from children in a museum. In J. M. Levine, L. B. Resnick, & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 226–256). Washington: American Psychological Association.

    Chapter  Google Scholar 

  • Ginsburg, H. P. (1989). Children’s arithmetic (2nd ed.). Austin: Pro-Ed.

    Google Scholar 

  • Ginsburg, H. P. (1997). Entering the child’s mind: the clinical interview in psychological research and practice. New York: Cambridge University Press.

    Book  Google Scholar 

  • Goldin-Meadow, S., & Alibali, M. W. (2002). Looking at the hands through time: a microgenetic perspective on learning and instruction. In N. Granott & J. Parziale (Eds.), Microdevelopment: transition processes in development and learning (pp. 80–105). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272.

    Article  Google Scholar 

  • Goldin-Meadow, S., & Alibali, M. W. (2013). Gesture’s role in learning and development. Annual Review of Psychology, 64, 257–283. doi:10.1146/annurev-psych-113011-143802.

    Article  Google Scholar 

  • Granott, N. (2002). How microdevelopment creates macrodevelopment: reiterated sequences, backward transitions, and the zone of current development. In N. Granott & J. Parziale (Eds.), Microdevelopment: transition processes in development and learning (pp. 213–242). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Hourcade, J. P., Bederson, B. B., Druin, A., & Guimbretiere, F. (2004). Differences in pointing task performance between preschool children and adults using mice. ACM Transactions on Computer-Human Interaction, 11(4), 357–386.

    Article  Google Scholar 

  • Hoyles, C., & Noss, R. (2009). The technological mediation of mathematics and its learning. Human Development, 52, 129–147.

    Article  Google Scholar 

  • Hoyles, C., Noss, R., & Adamson, R. (2002). Rethinking the microworld idea. Journal of Educational Computing Research, 27(1), 29–53.

    Article  Google Scholar 

  • iTot Apps, LLC (2011). Toddler counting (version 1.5) [mobile application software]. Retrieved from http://itunes.apple.com/.

  • Jamalian, A., & Tversky, B. (2012). Gestures alter thinking about time. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th annual conference of the Cognitive Science Society (pp. 551–557). Austin: Cognitive Science Society. IES Prize for Excellence in Research on Cognition and Student Learning (pp. 503–508).

    Google Scholar 

  • Jordan, N. C., Kaplan, D., Oláh, L. N., & Locuniak, M. N. (2006). Number sense growth in kindergarten: a longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77(1), 153–175.

    Article  Google Scholar 

  • Kessell, A. M., & Tversky, B. (2006). Using gestures and diagrams to think and talk about insight problems. In R. Sun & N. Miyake (Eds.), Proceedings of the 28th annual conference of the Cognitive Science Society (p. 2528).

    Google Scholar 

  • Kuhn, D., Garcia-Mila, M., Zohar, A., & Anderson, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development (Serial No. 245).

    Google Scholar 

  • Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723–1743.

    Article  Google Scholar 

  • Lepper, M. R., & Malone, Th. W. (1987). Intrinsic motivation and instructional effectiveness in computer-based education. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning, and instruction: Vol. 3. Conative and affective process analyses (pp. 255–286). Hillsdale: Erlbaum.

    Google Scholar 

  • Malone, T. W., & Lepper, M. R. (1987). Making learning fun: a taxonomy of intrinsic motivations for learning. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning, and instruction: Vol3. Cognitive and affective process analysis (pp. 223–253). Hillsdale: Erlbaum.

    Google Scholar 

  • Mclean, R. (2012). Space Math (version 1.4.2) [mobile application software]. Retrieved from http://itunes.apple.com/.

  • Mix, K. S. (1999). Similarity and numerical equivalence: appearances count. Cognitive Development, 14, 269–297.

    Article  Google Scholar 

  • Mix, K. S. (2010). Spatial tools for mathematical thought. In K. S. Mix, L. B. Smith, & M. Gasser (Eds.), The spatial foundations for language and cognition (pp. 41–66). Oxford: Oxford University Press.

    Google Scholar 

  • Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2008). Children’s early mental number line: logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103(4), 503–515.

    Article  Google Scholar 

  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.

    Google Scholar 

  • Moyer-Packenham, P. S., Salkind, G., & Bolyard, J. J. (2008). Virtual manipulatives used by K-8 teachers for mathematics instruction: considering mathematical, cognitive, and pedagogical fidelity. Contemporary Issues in Technology and Teacher Education, 8(3), 202–218.

    Google Scholar 

  • Moyer-Packenham, P. S., & Westenskow, A. (2013, in press). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments.

    Google Scholar 

  • Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1997). Mathematics achievement in the primary school years. In IEA’s third international mathematics and science study (TIMSS). Chestnut Hill: Center for the Study of Testing, Evaluation, and Educational Policy, Boston College.

    Google Scholar 

  • Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic Books.

    Google Scholar 

  • Petitto, A. L. (1990). Development of numberline and measurement concepts. Cognition and Instruction, 7(1), 55–78.

    Article  Google Scholar 

  • Piaget, J. (1952a) The child’s conception of number. London: Routledge & Kegan Paul Ltd. C. Gattegno & F. M. Hodgson, trans.

    Google Scholar 

  • Piaget, J. (1952b). The origins of intelligence in children. New York: International Universities Press. M. Cook, trans.

    Book  Google Scholar 

  • Piaget, J. (1976) The child’s conception of the world. Totowa: Littlefield, Adams & Co. J. Tomlinson & A. Tomlinson, trans.

    Google Scholar 

  • Ping, R., & Goldin-Meadow, S. (2008). Hands in the air: using ungrounded iconic gestures to teach children conservation of quantity. Developmental Psychology, 44(5), 1277–1287.

    Article  Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375–394.

    Article  Google Scholar 

  • Rodrigo, M. M. T., & Baker, R. S. J. d. (2011). Comparing the incidence and persistence of learners’ affect during interactions with different educational software packages. In R. A. Calvo & S. K. D’Mello (Eds.), New perspectives on affect and learning technologies (pp. 183–200).

    Chapter  Google Scholar 

  • Russell-Pinson, D. (2012). Rocket Math (version 1.8) [mobile application software]. Retrieved from http://itunes.apple.com/.

  • Sarama, J., & Clements, D. H. (2002). Linking research and software development. In Research on technology in the teaching and learning of mathematics: cases and perspectives (pp. 113–130).

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2009a). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145–150.

    Article  Google Scholar 

  • Sarama, J., & Clements, D. H. (2009b). Early childhood mathematics education research: learning trajectories for young children. New York: Routledge.

    Google Scholar 

  • Sawyer, R. K. (2006). The Cambridge handbook of the learning sciences. The new science of learning (pp. 1–16). New York: Cambridge University Press.

    Google Scholar 

  • Saxe, G. B., Earnest, D., Sitabkhan, Y., Halder, L. C., Lewis, K. E., & Zheng, Y. (2010). Supporting generative thinking about the integer number line in elementary mathematics. Cognition and Instruction, 28(4), 433–474.

    Article  Google Scholar 

  • Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology. Human Perception and Performance, 36(5), 1227–1238.

    Article  Google Scholar 

  • Segal, A. (2011). Do gestural interfaces promote thinking? Embodied interaction: congruent gestures and direct touch promote performance in math. Unpublished Dissertation, Columbia University.

    Google Scholar 

  • Shuler, C. (2009). Pockets of potential: using mobile technologies to promote children’s learning. New York: The Joan Ganz Cooney Center at Sesame Workshop.

    Google Scholar 

  • Siegler, R. S., & Booth, J. L. (2004). The development of numerical estimation in young children. Child Development, 75(2), 428–444.

    Article  Google Scholar 

  • Siegler, R. S., & Jenkins, E. A. (1989). How children discover new strategies. Hillsdale: Erlbaum.

    Google Scholar 

  • Siegler, R. S., & Svetina, M. (2006). What leads children to adopt new strategies? A microgenetic/cross sectional study of class inclusion. Child Development, 77, 997–1015.

    Article  Google Scholar 

  • Starkey, P., & Klein, A. (2008). Sociocultural influences on young children’s mathematical knowledge. In O. N. Seracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education. Charlotte: Information Age.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Vygotsky, L. S. (1986). Thought and language. Cambridge: MIT Press. A. Kozulin, trans.

    Google Scholar 

  • Weir, S., Russell, S. J., & Valente, J. A. (1982). Logo: an approach to educating disabled children. BYTE, 7, 342–360.

    Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.

    Article  Google Scholar 

  • Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006a). Principles underlying the design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(1), 19.

    Article  Google Scholar 

  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006b). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(20). doi:10.1186/1744-9081-2-20.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert P. Ginsburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ginsburg, H.P., Jamalian, A., Creighan, S. (2013). Cognitive Guidelines for the Design and Evaluation of Early Mathematics Software: The Example of MathemAntics . In: English, L., Mulligan, J. (eds) Reconceptualizing Early Mathematics Learning. Advances in Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6440-8_6

Download citation

Publish with us

Policies and ethics