Skip to main content

Salicylic Acid Biosynthesis and Role in Modulating Terpenoid and Flavonoid Metabolism in Plant Responses to Abiotic Stress

  • Chapter
  • First Online:
SALICYLIC ACID

Abstract

Salicylic acid (SA) is a simple phenolic acid with hormonal function synthesized from the amino acid phenylalanine or chorismate depending on the plant species, developmental stage and growth conditions. This compound plays a key role in plant growth and development, and in plant responses to abiotic stresses such as salinity and drought stress. Under these environmental constraints, plants synthesize a number of secondary metabolites, including flavonoids and terpenoids, with a defence-related function. Here, we will discuss the role of SA in modulating plant responses to abiotic stress, particularly as an inducer of defence responses against salinity and drought stress. Emphasis will be put on discussing the SA signalling pathways that affect flavonoid and terpenoid metabolism as defense compounds against stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu, M. E., & Munne-Bosch, S. (2008). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64, 105–112.

    CAS  Google Scholar 

  • Abreu, M. E., & Munne-Bosch, S. (2009). Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 60, 1261–1271.

    PubMed  CAS  Google Scholar 

  • Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186, 786–793.

    PubMed  CAS  Google Scholar 

  • Agati, G., Matteini, P., Goti, A., & Tattini, M. (2007). Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytologist, 174, 77–89.

    PubMed  CAS  Google Scholar 

  • Ahuja, I., Ralph, K., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17, 73–90.

    PubMed  CAS  Google Scholar 

  • Alibert, G., Boudet, A., & Ranjeva, R. (1972). Reseach on enzymes catalyzing biosynthesis of phenolic accids in Quercus pedunculata. 3. Sequential formation of cinnamic, para-coumaric and cafeic acids by isolated cell organelles from phenylalanine. Physiologia Plantarum, 27, 240.

    CAS  Google Scholar 

  • Alibert, G., & Ranjeva, R. (1972). Recherches sur les enzymes catalysant la biosynthèse des acides phénoliques chez Quercus pedunculata (Ehrh.): II. Localisation intracellulaire de la phenylalanine ammonique-lyase, de la cinnamate 4-hydroxylase, et de la benzoate synthase. Biochimica et Biophysica Acta, 279, 282–289.

    Google Scholar 

  • Alvarez, M. E. (2000). Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44, 429–442.

    PubMed  CAS  Google Scholar 

  • Baek, D., Pathange, P., Chung, J.-S., Jiang, J., Gao, L., Oikawa, A., et al. (2010). A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant, Cell and Environment, 33, 1383–1392.

    PubMed  CAS  Google Scholar 

  • Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiology Plant, 27, 379–386.

    CAS  Google Scholar 

  • Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.

    PubMed  CAS  Google Scholar 

  • Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A., & Mundy, J. (2005). The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 138, 1037–1045.

    PubMed  CAS  Google Scholar 

  • Campos, A. D., Ferreira, A. G., Hampe, M. M. V., Antunes, I. F., Brancao, N., Silveira, E. P., et al. (2003). Induction of chalcone synthase and phenylalanine ammonia-lyase by salicylic acid and Colletotrichum lindemuthianum in common bean. Brazil Journal of Plant Physiology, 15, 129–134.

    CAS  Google Scholar 

  • Cao, X. Y., Li, C. G., Miao, Q., Zheng, Z. J., & Jiang, J. H. (2011). Molecular cloning and expression analysis of a leaf-specific expressing 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase gene from Michelia chapensis Dandy. Journal of Medical Plants Research, 5, 3868–3875.

    CAS  Google Scholar 

  • Cao, X. Y., Yin, T., Miao, Q., Li, C. G., Ju, X. Y., Sun, Y., et al. (2012). Molecular characterization and expression analysis of a gene encoding for farnesyl diphosphate synthase from Euphorbia pekinensis Rupr. Molecular Biology Reports, 39, 1487–1492.

    PubMed  CAS  Google Scholar 

  • Castagne, V., Barneoud, P., & Clarke, P. G. H. (1999). Protection of axotomized ganglion cells by salicylic acid. Brain Research, 840, 162–166.

    PubMed  CAS  Google Scholar 

  • Catinot, J., Buchala, A., Abou-Mansour, E., & Métraux, J.-P. (2008). Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters, 582, 473–478.

    PubMed  CAS  Google Scholar 

  • Chadha, K. C., & Brown, S. A. (1974). Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Canadian Journal of Botany, 52, 2041–2047.

    CAS  Google Scholar 

  • Chakraborty, U., & Tongden, C. (2005). Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Current Science, 89, 384–389.

    CAS  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30, 239–264.

    CAS  Google Scholar 

  • Chen, F., D’Auria, J. C., Tholl, D., Ross, J. R., Gershenzon, J., Noel, J. P., et al. (2003). An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. The Plant Journal, 36, 577–588.

    PubMed  CAS  Google Scholar 

  • Chen, H., Xue, L., Chintamanani, S., Germain, H., Lin, H., Cui, H., et al. (2009). ETHYLENEINSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negativelyregulate plant innate immunity in Arabidopsis. Plant Cell, 21, 2527–2540.

    PubMed  CAS  Google Scholar 

  • Chen, Z. X., Silva, H., & Klessig, D. F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262, 1883–1886.

    PubMed  CAS  Google Scholar 

  • Cheng, A. X., Lou, Y. G., Mao, Y. B. Lu, S., Wang, L. J., & Chan, X, Y. (2007). Plant terpenoids: biosynthesis and ecological functions. Journal. Integrative Plant Biology, 49, 179–186.

    Google Scholar 

  • Choudhudy, S., & adn panda, S. K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarica Journal of Plant Physiology, 30, 95–110.

    Google Scholar 

  • Copolovici, L. O., Filella, I., Llusià, J., Niinemets, U., & Peñuelas, J. (2005). The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Biology, 139, 485–496.

    CAS  Google Scholar 

  • Coquoz, J.-L., Buchala, A., & Métraux, J.-P. (1998). The biosynthesis of salicylic acid in potato plants. Plant Physiology, 117, 1095–1101.

    PubMed  CAS  Google Scholar 

  • Danon, A., Miersch, O., Felix, G., den Camp, R. G. L. O., & Appel, K. (2005). Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. The Plant Journal, 41, 68–88.

    PubMed  CAS  Google Scholar 

  • Dat, J. F., López-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665.

    CAS  Google Scholar 

  • Dean, J. V., & Delaney, S. P. (2008). Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiologia Plantarum, 132, 417–425.

    PubMed  CAS  Google Scholar 

  • Dean, J. V., & Mills, J. D. (2004). Uptake of salicylic acid 2-O-β-Dglucoseinto soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiologia Plantarum, 120, 603–612.

    PubMed  CAS  Google Scholar 

  • Dean, J. V., Mohammed, L. A., & Fitzpatrick, T. (2005). The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta, 221, 287–296.

    PubMed  CAS  Google Scholar 

  • Delfine, S., Loreto, F., Pinelli, P., Tognetti, R., & Alvino, A. (2005). Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agriculture, Ecosystems and Environment, 106, 243–252.

    CAS  Google Scholar 

  • Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. In The Arabidopsis book. American Society of Plant Biologists (Vol. 9, pp. e0156).

    Google Scholar 

  • Dempsey, D. A., Shah, J., & Klessig, D. F. (1999). Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences, 18, 547–575.

    CAS  Google Scholar 

  • Durner, J., & Klessig, D. F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. Journal of Biological Chemistry, 271, 28492–28501.

    PubMed  CAS  Google Scholar 

  • El Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45, 215–224.

    Google Scholar 

  • El-Basyouni, S. Z., Chen, D., Ibrahim, R. K., Neish, A. C., & Towers, G. H. N. (1964). The biosynthesis of hydroxybenzoic acids in higherplants. Phytochemistry, 3, 485–492.

    CAS  Google Scholar 

  • Ellis, B. E., & Amrhein, N. (1971). NIH-shift during aromatic orthodihydroxylation in higher plants. Phytochemistry, 10, 3069.

    CAS  Google Scholar 

  • Enyedi, A. J., Yalpani, N., Silverman, P., & Raskin, I. (1992). Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive response reaction to tobacco mosaiv-virus. Proceedings of the National Academy of Sciences of the United States of America, 89, 2480–2484.

    PubMed  CAS  Google Scholar 

  • Eraslan, F., Inal, A., Gunes, A., & Almaslam, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120–128.

    CAS  Google Scholar 

  • Feild, T. S., Lee, D. W., & Holbrook, N. M. (2001). Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiology, 127, 566–574.

    PubMed  CAS  Google Scholar 

  • Ford, K. A., Casida, J. E., Chandran, D., Gulevich, A. G., Okrent, R. A., Durkin, K. A., et al. (2010). Neonicotinoid insecticides induce salicylate-associated plantdefense responses. Proceedings of the National Academy of Sciences of the United States of America, 107, 17527–17532.

    PubMed  CAS  Google Scholar 

  • Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., et al. (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 102, 1773–1778.

    PubMed  CAS  Google Scholar 

  • Garcion, C., & Métraux, J.-P. (2006). Salicylic acid. In P. Hedden & S. G. Thomas (Eds.), Plant hormone signaling (pp. 229–255). Oxford: Blackwell Press.

    Google Scholar 

  • Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P., et al. (2008). Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiology, 147, 1279–1287.

    PubMed  CAS  Google Scholar 

  • Gechev, T., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., et al. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences, 59, 708–714.

    PubMed  CAS  Google Scholar 

  • Gestetner, B., & Conn, E. E. (1974). 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba. Archives of Biochemistry and Biophysics, 163, 624–671.

    Google Scholar 

  • Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., et al. (2008). The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, andmodel analysis, and data access. The Plant Journal, 55, 526–542.

    PubMed  CAS  Google Scholar 

  • Griesebach, H., & Vollmer, K. O. (1963). Untersuchungen zur biosynthese des salicylsauremethylesters in Gaultheria procumbens L. Z. Naturforsch B, 18, 753.

    Google Scholar 

  • Grotewold, E. (2006). The science of flavonoids. Berlin: Springer.

    Google Scholar 

  • Guo, A. L., Salih, G., & Klessig, D. F. (2000). Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a subset is also ethylene independent. The Plant Journal, 21, 409–418.

    PubMed  CAS  Google Scholar 

  • Hamada, A. M., & Al Hakimi, A. M. A. (2001). Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rost Vyroba, 47, 444–450.

    CAS  Google Scholar 

  • Harrison, A. J., Yu, M., Gårdenborg, T., Middleditch, M., Ramsay, R. J., Baker, E. N., et al. (2006). The structure of MbtI from Mycobacteriumtuberculosis, the first enzyme in the biosynthesis of the siderophoremycobactin, reveals it to be a salicylate synthase. Journal of Bacteriology, 188, 6081–6091.

    PubMed  CAS  Google Scholar 

  • Harrower, J., & Wildermuth, M. C. (2011). Exogenous salicylic acid treatment of Arabidopsis thaliana Col-0. NCBI Gene Expression Omnibus Acession No. GSE33402.

    Google Scholar 

  • Havaux, M., Eymery, F., Porfirova, S., Rey, P., & Dormann, P. (2005). Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell, 17, 3451–3469.

    PubMed  CAS  Google Scholar 

  • Havaux, M., & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213, 953–966.

    CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3, 297–304.

    CAS  Google Scholar 

  • He, Y. L., Liu, Y. L., Cao, W. X., Huai, M. F., Xu, B. G., & Huang, B. G. (2005). Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 45, 988–995.

    CAS  Google Scholar 

  • Hernández, I., Alegre, L., & Munne-Bosch, S. (2006). Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants. Phytochemistry, 67, 1120–1126.

    PubMed  Google Scholar 

  • Hernández, I., Alegre, L., Van Breusegem, F., & Munné-Bosch, S. (2009). How relevant are flavonoids as antioxidants in plants? Trends in Plant Science, 14, 125–132.

    PubMed  Google Scholar 

  • Ibdah, M., Chen, Y.-T., Wilkerson, C. G., & Pichersky, E. (2009). Analdehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiology, 150, 416–423.

    PubMed  CAS  Google Scholar 

  • Janda, T., Szalai, G., Antunovics, Z., Horvath, E., & Paldi, E. (2000). Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica, 45, 29–33.

    Google Scholar 

  • Janda, T., Szalai, G., Tari, I., & Paldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.

    CAS  Google Scholar 

  • Jarvis, A. P., Schaaf, O., & Oldham, N. J. (2000). 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acidand salicylic acid but benzaldehyde is not. Planta, 212, 119–126.

    PubMed  CAS  Google Scholar 

  • Kai, M., Crespo, E., Cristescu, S. M., Harren, F. J. M., Francke, W., & Piechulla, B. (2010). Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Applied Microbiology and Biotechnology, 88, 965–976.

    PubMed  CAS  Google Scholar 

  • Kaydan, D., Yagmur, M., & Okut, N. (2007). Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi-Journal Agricultural Science, 13, 114–119.

    Google Scholar 

  • Kerbarh, O., Ciulli, A., Howard, N. I., & Abell, C. (2005). Salicylate biosynthesis: overexpression, purification and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. Journal of Bacteriology, 187, 5061–5066.

    PubMed  CAS  Google Scholar 

  • Klämbt, H. D. (1962). Conversion in plants of benzoic acid to salicylic acidand its βd-glucoside. Nature, 196, 491.

    Google Scholar 

  • Knorzer, O. C., Lederer, B., Durner, J., & Boger, P. (1999). Antioxidative defense activation in soybean cells. Physiology of Plant, 107, 294–302.

    CAS  Google Scholar 

  • Koo, Y. J., Kim, M. A., Kim, E. H., Song, J. T., Jung, C., Moon, J. K., et al. (2007). Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 64, 1–15.

    PubMed  CAS  Google Scholar 

  • Langebartels, C., Wohlgemuth, H., Kschieschan, S., Grun, S., & Sandermann, H. (2002). Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry, 40, 575–657.

    Google Scholar 

  • Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.

    PubMed  CAS  Google Scholar 

  • Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138, 882–897.

    PubMed  CAS  Google Scholar 

  • Lee, H.-I., & Raskin, I. (1998). Glucosylation of salicylic acid in Nicotiana tabacum Cv Xanthi-nc. Phytopathology, 88, 692–697.

    PubMed  CAS  Google Scholar 

  • Lee, H.-I., León, J., & Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 92, 4076–4079.

    PubMed  CAS  Google Scholar 

  • León, J., Yalpani, N., Raskin, I., & Lawton, M. A. (1993). Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiology, 103, 323–328.

    PubMed  Google Scholar 

  • Malamy, J., Hennig, J., & Klessig, D. F. (1992). Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell, 4, 359–366.

    Google Scholar 

  • Malamy, J., & Klessig, D. F. (1992). Salicylic acid and plant disease resistance. The Plant Journal, 2, 643–654.

    CAS  Google Scholar 

  • Martínez, C., Pons, E., Prats, G., & León, J. (2004). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37, 209–217.

    PubMed  Google Scholar 

  • Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8, 203–212.

    PubMed  CAS  Google Scholar 

  • Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., & Reimmann, C. (2001). Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. The Plant Journal, 25, 67–77.

    PubMed  CAS  Google Scholar 

  • Mercado-Blanco, J., Van Der Drift, K. M. G. M., Olsson, P. E., Thomas-Oates, J. E., Van Loon, L. C., & Bakker, P. A. H. M. (2001). Analysis ofthe pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore Pseudomonine in the biocontrol strain Pseudomonasfluorescens WCS374. Journal of Bacteriology, 183, 1909–1920.

    PubMed  CAS  Google Scholar 

  • Meuwly, P., Mölders, W., Buchala, A., & Métraux, J.-P. (1995). Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiology, 109, 1107–1114.

    PubMed  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    PubMed  CAS  Google Scholar 

  • Molina, A., Bueno, P., Marín, M. C., Rodríguez-Rosales, M. P., Belver, A., Venema, K., et al. (2002). Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytologist, 156, 409–415.

    CAS  Google Scholar 

  • Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–581.

    PubMed  Google Scholar 

  • Morris, K., Mackerness, S. A. H., Page, T., John, C. F., Murphy, A. M., Carr, J. P., et al. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 23, 677–685.

    PubMed  CAS  Google Scholar 

  • Munné-Bosch, S. (2005). The role of α-tocopherol in plant stress tolerance. Journal of Plant Physiology, 162, 743–748.

    PubMed  Google Scholar 

  • Munné-Bosch, S., & Alegre, L. (2003). Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiology, 131, 1816–1825.

    PubMed  Google Scholar 

  • Munné-Bosch, S., & Peñuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217, 758–766.

    PubMed  Google Scholar 

  • Mustafa, N. R., Kim, H. K., Choi, Y. H., Erkelens, C., Lefeber, A. W. M., Spijksma, G., et al. (2009). Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry, 70, 532–539.

    PubMed  CAS  Google Scholar 

  • Navarre, D. A., & Mayo, D. (2004). Differential characteristics of salicylic acid-mediated signaling in potato. Physiological and Molecular Plant Pathology, 64, 179–188.

    CAS  Google Scholar 

  • Nawrath, C., & Métraux, J.-P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11, 1393–1404.

    PubMed  CAS  Google Scholar 

  • Nishimura, M. T., & Dangl, J. L. (2010). Arabidopsis and the plant immune system. The Plant Journal, 61, 1053–1066.

    PubMed  CAS  Google Scholar 

  • Nobuta, K., Okrent, R. A., Stoutemyer, M., Rodibaugh, N., Kempema, L., Wildermuth, M. C., et al. (2007). The GH3 acyl adenylasefamily member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiology, 144, 1144–1156.

    PubMed  CAS  Google Scholar 

  • Nugroho, L. H., Verberne, M. C., & Verpoorte, R. (2002). Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiology and Biochemistry, 40, 755–760.

    CAS  Google Scholar 

  • Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant and Cell Physiology, 46, 1062–1072.

    PubMed  CAS  Google Scholar 

  • Owen, S. M., & Peñuelas, J. (2005). Opportunistic emissions of volatile isoprenoids. Trends in Plant Science, 10, 420–426.

    PubMed  CAS  Google Scholar 

  • Pallas, J. A., Paiva, N. L., Lamb, C., & Dixon, R. A. (1996). Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. The Plant Journal, 10, 281–293.

    CAS  Google Scholar 

  • Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P. E., Jeon, J., Yun, J., et al. (2007a). GH3-mediatedauxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. Journal of Biological Chemistry, 282, 10036–10046.

    PubMed  CAS  Google Scholar 

  • Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007b). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318, 113–116.

    PubMed  CAS  Google Scholar 

  • Parsons, J. F., Shi, K. M., & Ladner, J. E. (2008). Structure of isochorismate synthase in complex with magnesium. Acta Crystallography D, 64, 607–610.

    Google Scholar 

  • Peñuelas, J., & Munné-Bosch, S. (2005). Isoprenoids: an evolutionary pool for photoprotection. Trends in Plant Science, 10, 166–169.

    PubMed  Google Scholar 

  • Peñuelas, J., Llusià, J., & Filella, I. (2007). Methyl salicylate fumigation increases monoterpene emission rates. Biologia Plantarum, 51, 372–376.

    Google Scholar 

  • Pieterse, C. M. J., & Van Loon, L. C. (2004). NPR1: the spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology, 7, 456–464.

    PubMed  CAS  Google Scholar 

  • Popova, L., Pancheva, T., & Uzunova, A. (1997). Salicylic acid: properties, biosynthesis and physiological role. Bulgarica Journal of Plant Physiology, 23, 85–93.

    CAS  Google Scholar 

  • Rao, M. V., & Davis, K. R. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. The Plant Journal, 17, 603–614.

    PubMed  CAS  Google Scholar 

  • Rao, M. V., Lee, H., & Davis, K. R. (2002). Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. The Plant Journal, 32, 447–456.

    PubMed  CAS  Google Scholar 

  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Reviews of Plant Physiology, 43, 439–463.

    CAS  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and nonthermogenic plants. Annals of Botany, 66, 369–373.

    CAS  Google Scholar 

  • Ribnicky, D. M., Shulaev, V., & Raskin, I. (1998). Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiology, 118, 565–572.

    PubMed  CAS  Google Scholar 

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Google Scholar 

  • Russell, D. W., & Conn, E. (1967). The cinnamic acid 4-hydroxylase of pea seedlings [isolation, activity, cofactor requirements]. Archives of Biochemistry and Biophysics, 122, 256–258.

    PubMed  CAS  Google Scholar 

  • Sakhabutdinova, A. R., Fatkhutdinova, D. R., & Shakirova, F. M. (2004). Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Applied Biochemistry and Microbiology, 40, 501–505.

    CAS  Google Scholar 

  • Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.

    CAS  Google Scholar 

  • Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., & Haas, D. (1995). Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Molecular and General Genetics, 249, 217–228.

    PubMed  CAS  Google Scholar 

  • Shabani, L., Ehsanpour, A. A., & Esmaeili, A. (2010). Assessment of squalene synthase and beta-amyrin synthase gene expression in licorice roots treated with methyl jasmonate and salicylic acid using real-time qPCR. Russian Journal of Plant Physiology, 57, 480–484.

    CAS  Google Scholar 

  • Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317–322.

    CAS  Google Scholar 

  • Sharma, Y. K., León, J., Raskin, I., & Davis, K. R. (1996). Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National Academy of Sciences of the United States of America, 93, 5014–5099.

    Google Scholar 

  • Shulaev, V., Silverman, P., & Raskin, I. (1997). Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385, 718–721.

    CAS  Google Scholar 

  • Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Métraux, J.-P., & Raskin, I. (1995). Salicylic acid in rice. Biosynthesis, conjugation and possible role. Plant Physiology, 108, 633–639.

    PubMed  CAS  Google Scholar 

  • Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137–141.

    CAS  Google Scholar 

  • Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and dessiccation. New Phytologist, 125, 27–58.

    CAS  Google Scholar 

  • Smith, J. A., & Mètraux, J. P. (1991). Pseudomonas syringae pv. syringae induces systemic resistance to Pycularia oryzae in rice. Physiological and Molecular Plant Pathology, 39, 451–461.

    Google Scholar 

  • Song, J. T., Koo, Y. J., Park, J. B., Seo, Y. J., Cho, Y. J., Seo, H. S., et al. (2009). The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses. Molecules and Cells, 28, 105–109.

    PubMed  CAS  Google Scholar 

  • Song, J. T. (2006). Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Molecules and Cells, 22, 233–238.

    PubMed  CAS  Google Scholar 

  • Stalman, M., Koskamp, A.-M., Luderer, R., Vernooy, J. H. J., Wind, J. C., Wullems, G. J., et al. (2003). Regulation of anthraquinone biosynthesis in cell cultures of Morinda citrifolia. Journal of Plant Physiology, 160, 607–614.

    PubMed  CAS  Google Scholar 

  • Strawn, M. A., Marr, S. K., Inoue, K., Inada, N., Zubieta, C., & Wildermuth, M. C. (2007). Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. Journal of Biological Chemistry, 282, 5919–5933.

    PubMed  CAS  Google Scholar 

  • Strobel, N. E., & Kuc, A. (1995). Chemical and biological inducers of systemic resistance to pathogens protect cucumber and tobacco plants from damage caused by paraquat and cupric chloride. Phytopathology, 85, 1306–1310.

    CAS  Google Scholar 

  • Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D., & Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist, 163, 547–561.

    CAS  Google Scholar 

  • Uppalapati, S. R., Ishiga, Y., Wangdi, T., Kunkel, B. N., Anand, A., Mysore, K. S., et al. (2007). The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions, 20, 955–965.

    PubMed  CAS  Google Scholar 

  • van Tegelen, L. J. P., Moreno, P. R. H., Croes, A. F., Verpoorte, R., & Wullems, G. J. (1999). Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiology, 119, 705–712.

    PubMed  Google Scholar 

  • Valentin, H. E., Lincoln, K., Moshiri, F., Jensen, P. K., Qi, Q., Venkatesh, T. V., et al. (2006). The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell, 18, 212–224.

    PubMed  CAS  Google Scholar 

  • Verberne, M. C., Verpoorte, R., Bol, J. F., Mercado-Blanco, J., & Linthorst, H. J. M. (2000). Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology, 18, 779–783.

    PubMed  CAS  Google Scholar 

  • Verberne, M. C., Budi Muljono, R. A., & Verpoorte, R. (1999). Salicylic acid biosynthesis. In P. P. J. Hooykaas, M. A. Hall, & K. R. Libbenga (Eds.), Biochemistry and molecular biology of plant hormones (pp. 295–314). Amsterdam, The Netherlands: Elsevier Science B.V.

    Google Scholar 

  • Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.

    PubMed  CAS  Google Scholar 

  • Vlot, A. C., Klessig, D. F., & Park, S. W. (2008). Systemic acquired resistance: the elusive signal(s). Current Opinion in Plant Biology, 11, 436–442.

    PubMed  CAS  Google Scholar 

  • Wildermuth, M. C. (2006). Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology, 9, 288–296.

    PubMed  CAS  Google Scholar 

  • Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.

    PubMed  CAS  Google Scholar 

  • Williams, C. A., & Grayer, R. J. (2004). Anthocyanins and other flavonoids. Natural Products Reports, 21, 539–573.

    CAS  Google Scholar 

  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485–493.

    PubMed  CAS  Google Scholar 

  • Xu F., Cheng., Cai, R., Li, L. L., Chang, J., Zhu, J., Zhang, F. X., Chen, L. J., Wang, Y., Cheng, S. H. & Cheng, S. Y. (2008). Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Molecules and Cells 26:536–547.

    Google Scholar 

  • Xu, M., Dong, J., Wang, H., & Huang, L. Q. (2009). Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells. Plant, Cell and Environment, 32, 960–967.

    PubMed  CAS  Google Scholar 

  • Yalpani, N., Enyedi, A. J., León, J., & Raskin, I. (1994). UV light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193, 372–376.

    CAS  Google Scholar 

  • Yalpani, N., León, J., Lawton, M. A., & Raskin, I. (1993). Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiology, 103, 315–321.

    PubMed  CAS  Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., & Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809–818.

    PubMed  CAS  Google Scholar 

  • Yan, X., Zhang, L., Wang, J., Liao, P., Zhang, Y., Zhang, R., et al. (2009). Molecular characterization and expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza. Acta Physiology of Plant, 31, 1015–1022.

    CAS  Google Scholar 

  • Yang, Y. N., Qi, M., & Mei, C. S. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The Plant Journal, 40, 909–919.

    PubMed  CAS  Google Scholar 

  • Yang, Y., He, F., Ji, J. X., Zheng, H., & Yu, L. J. (2008). Effect of exogenous salicylic acid on flavonoid accumulation in cell suspension culture of Glycyrrhiza inflata. Plant Physiological Communications, 44, 504–506.

    CAS  Google Scholar 

  • Yu, Z. Z., Fu, C. X., Han, Y. S., Li, X. Y., & Zhao, D. X. (2006). Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnology Letters, 28, 1027–1031.

    PubMed  CAS  Google Scholar 

  • Yuan, Y., Chung, J.-D., Fu, X., Johnson, V. E., Ranjan, P., Booth, S. L., et al. (2009). Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 106, 22020–22025.

    PubMed  CAS  Google Scholar 

  • Yusuf, M., Hasan, S. A., Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). Effect of salicylic acid on salinity-induced changes in Brassica juncea. Journal of Integrative Plant Biology, 50, 1096–1102.

    PubMed  CAS  Google Scholar 

  • Zenk, M. H., & Muller, G. (1964). Biosynthese von p-hydroxybenzoesaure und anderer benzoesauren in hoheren Pflanzen. Z. Naturforsch B., 19, 398.

    PubMed  CAS  Google Scholar 

  • Zhang, S. Q., & Klessig, D. F. (2001). MAPK cascades in plant defense signaling. Trends in Plant Science, 6, 520–527.

    PubMed  CAS  Google Scholar 

  • Ziebart, K. T., & Toney, M. D. (2010). Nucleophyle specificity in anthranilate synthase, amidodeoxychorismate synthase, and salicylate synthase. Biochemistry, 49, 2851–2859.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for the research of S.M.-B. laboratory was received through grants BFU2012-32057, BFU2009-07294 and BFU2009-06045 from the Spanish Government, and the ICREA Academia award funded by the Generalitat de Catalunya. “We are also very grateful to the Spanish Government for the “Juan de la Cierva” fellowship given to I.H.”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Munné-Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tounekti, T., Hernández, I., Munné-Bosch, S. (2013). Salicylic Acid Biosynthesis and Role in Modulating Terpenoid and Flavonoid Metabolism in Plant Responses to Abiotic Stress. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_8

Download citation

Publish with us

Policies and ethics