Skip to main content

Signaling Role of Salicylic Acid in Abiotic Stress Responses in Plants

  • Chapter
  • First Online:
SALICYLIC ACID

Abstract

It is well known that salicylic acid (SA) is a natural signaling molecule involved in plant defense response against pathogen infection. In addition to plant responses to biological enermies, evidence on the involvement of SA in the plant abiotic responses has been recently provided. This chapter covers the recent progress in our understanding of the SA signaling pathways and mechanisms by which SA performs its role as the mediator of stress responses. In the upper half, history and progress in reactive oxygen species (ROS) and calcium signaling-related researches are covered, as both ROS and calcium are now considered to act downstream of SA action during both the plant defense against pathogenic microbes and cellular response to various abiotic stimuli. In the lower half of the chapter, plant cell responses to abiotic stresses in the surrounding environment including exposures of plant cells to photochemical oxidants chiefly ozone, radiation by ultraviolet light, and toxic metal ions such as ions of copper and aluminum are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors, R., Brosche, M., Kollist, H., & Kangasjarvi, J. (2009). Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. The Plant Journal, 58, 1–12.

    PubMed  CAS  Google Scholar 

  • Antoniw, J. F., & White, R. F. (1980). The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathologische Zeitschrift, 98, 331–341.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    PubMed  CAS  Google Scholar 

  • Asano, T., Hayashi, N., Kikuchi, S., & Ohsugi, R. (2012). CDPK-mediated abiotic stress signaling. Plant Signaling and Behavior, 7, 1–5.

    Google Scholar 

  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment, 28, 949–964.

    CAS  Google Scholar 

  • Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63, 3523–3544.

    PubMed  CAS  Google Scholar 

  • Aubin, N., Curet, O., Deffois, A., & Carter, C. (1998). Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. Journal of Neurochemistry, 71, 1635–1642.

    PubMed  CAS  Google Scholar 

  • Baier, M., Kandlbinder, A., Golldack, D., & Diez, K. L. (2005). Oxidative stress and ozone: Perception, signalling and response. Plant, Cell and Environment, 28, 1012–1020.

    CAS  Google Scholar 

  • Baker, A., Graham, I. A., Holdsworth, M., Smith, S. M., & Theodouloue, F. L. (2006). Chewing the fat: β-oxidation in signalling and development. Trends in Plant Science, 11, 124–132.

    PubMed  CAS  Google Scholar 

  • Barret, L. A., Bunce, N. J., & Gillespie, T. J. (1998). Estimation of tropospheric ozone production using concentrations of hydrocarbons and NOx, and a comprehensive hydrocarbons reactivity parameter. Journal of Photochemistry and Photobiology A: Chemistry, 113, 1–8.

    Google Scholar 

  • Bolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., et al. (2002). The apoplastic oxidative burst in response to biotic stress in plants: A three-component system. Journal of Experimental Botany, 53, 1367–1376.

    PubMed  CAS  Google Scholar 

  • Chai, H. B., & Doke, N. (1987a). Activation of the potential of potato leaf tissue to react hypersensitively to Phytophthora infestans by cystospore germination fluid and the enhancement of the potential by calcium ion. Physiological and Molecular Plant Pathology, 30, 27–37.

    CAS  Google Scholar 

  • Chai, H. B., & Doke, N. (1987b). Superoxide anion generation: A response of potato leaves to infection with Phytophthora infestans. Phytopathology, 77, 645–649.

    CAS  Google Scholar 

  • Chai, H. B., & Doke, N. (1987c). Systemic activation of an O2 generating reaction, superoxide dismutase and peroxidase in potato plant in relation to systemic induction of resistance to Phytophthora infestans. Annals of the Phytopathological Society of Japan, 53, 585–590.

    CAS  Google Scholar 

  • Chen, Z., Ricigliano, J. R., & Klessig, D. F. (1993a). Purification and characterization of soluble salicylic acid binding protein from tobacco. Proceedings of the National Academy of Sciences of the United States of America, 90, 9533–9537.

    PubMed  CAS  Google Scholar 

  • Chen, Z., Silva, H., & Klessig, D. F. (1993b). Active oxygen species in the induction of plant systemic acquired resistance induced by salicylic acid. Science, 262, 1883–1886.

    PubMed  CAS  Google Scholar 

  • Chiou, S. H. (1983). DNA- and protein-scission activities of ascorbate in the presence of copper ion and a copper-peptide complex. Journal of Biochemistry, 94, 1259–1267.

    PubMed  CAS  Google Scholar 

  • Clayton, H., Knight, M. R., Knight, H., McAinsh, M. R., & Hetherington, A. M. (1999). Dissection of the ozone-induced calcium signature. The Plant Journal, 17, 575–579.

    PubMed  CAS  Google Scholar 

  • Coll, N. S., Epple, P., & Dangl, J. L. (2011). Programmed cell death in the plant immune system. Cell Death and Differentiation, 18, 1247–1256.

    PubMed  CAS  Google Scholar 

  • De Pinto, M. C., Locato, V., & de Gara, L. (2012). Redox regulation in plant programmed cell death. Plant, Cell and Environment, 35, 234–244.

    PubMed  Google Scholar 

  • Del Río, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., Gómez, M., & Barroso, J. B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 53, 1255–1272.

    PubMed  Google Scholar 

  • Doke, N. (1983a). Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological Plant Pathology, 23, 345–357.

    CAS  Google Scholar 

  • Doke, N. (1983b). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology, 23, 359–367.

    CAS  Google Scholar 

  • Doke, N. (1985). NADPH-dependent O2− generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiological Plant Pathology, 27, 311–322.

    CAS  Google Scholar 

  • Doke, N., & Chai, H. B. (1985). Activation of superoxide generation and enhancement of resistance against compatible races of Phytophthora infestans in potato plants treated with digitonin. Physiological Plant Pathology, 27, 323–334.

    CAS  Google Scholar 

  • Doke, N., & Miura, N. (1995). In vitro activation of NADPH-dependent O2 generating system in isolated plasmamembrane-rich fraction of potato tuber tissues by treatment with an elicitor from Phytophthora infestans and digitonin. Physiological and Molecular Plant Pathology, 46, 17–28.

    CAS  Google Scholar 

  • Du, L., Ali, G. S., Simons, K. A., Hou, J., Yang, T., Reddy, A. S. N., et al. (2009). Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature, 457, 1154–1158.

    PubMed  CAS  Google Scholar 

  • Evans, N. H., McAinsh, M. R., Hetherington, A. M., & Knight, M. R. (2005). ROS perception in Arabidopsis thaliana: The ozone-induced calcium response. The Plant Journal, 41, 615–626.

    PubMed  CAS  Google Scholar 

  • Fiscus, E. L., Booker, F. L., & Burkey, K. O. (2005). Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning. Plant, Cell and Environment, 28, 997–1011.

    CAS  Google Scholar 

  • Fobert, P. R., & Després, C. (2005). Redox control of systemic acquired resistance. Current Opinion in Plant Biology, 8, 378–382.

    PubMed  CAS  Google Scholar 

  • Furuichi, T., Kawano, T., Tatsumi, H., & Sokabe, M., 2007. Roles of ion channels in environmental responses of plants. In B. Martinac (Ed.), Sensing with ion channels. Springer series in biophysics (Vol. 11 pp. 47–62). Berlin: Springer.

    Google Scholar 

  • Gaupels, F., Kuruthukulangarakoola, G. T., & Durner, J. (2011). Upstream and downstream signals of nitric oxide in pathogen defence. Current Opinion in Plant Biology, 14, 707–714.

    PubMed  CAS  Google Scholar 

  • Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 28, 1091–1101.

    PubMed  CAS  Google Scholar 

  • Grootveld, M., & Halliwell, B. (1986). Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochemical Journal, 273, 499–504.

    Google Scholar 

  • Halliwell, B., Kaur, H., & Ingelman-Sundberg, M. (1991). Hydroxylation of salicylate as an assay for hydroxyl radicals: A cautionary note. Free Radical Biology and Medicine, 10, 439–441.

    PubMed  CAS  Google Scholar 

  • Heggestad, H. E. (1991). Origin of Bel-W3, Bel-C and Bel-B tobacco varieties and their use as indicators of ozone. Environmental Pollution, 74, 264–291.

    PubMed  CAS  Google Scholar 

  • Hennig, J., Malamy, J., Grynkiewicz, G., Indulski, J., & Klessig, D. F. (1993). Interconversion of the salicylic acid signal and its glucoside in plants. The Plant Journal, 4, 593–600.

    PubMed  CAS  Google Scholar 

  • Higuchi, Y. (2003). Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochemical Pharmacology, 66, 1527–1535.

    PubMed  CAS  Google Scholar 

  • Inoue, H., Kudo, T., Kamada, H., Kimura, M., Yamaguchi, I., & Hamamoto, H. (2005). Copper elicits an increase in cytosolic free calcium in cultured tobacco cells. Plant Physiology and Biochemistry, 43, 1089–1094.

    Google Scholar 

  • Jiang, M., & Zhang, J. (2002). Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 215, 1022–1030.

    PubMed  CAS  Google Scholar 

  • Kadono, T., Yamaguchi, Y., Furuichi, T., Hirono, M., Garrec, J. P., & Kawano, T. (2006). Ozone-induced cell death mediated with oxidative and calcium signaling pathways in tobacco Bel-W3 and Bel-B cell suspension cultures. Plant Signaling and Behavior, 1, 312–322.

    PubMed  Google Scholar 

  • Kadono, T., Tran, D., Errakhi, R., Hiramatsu, T., Meimoun, P., Briand, J., et al. (2010). Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. PLoS ONE, 5, e13373.

    PubMed  Google Scholar 

  • Kagenishi, T., Yokawa, K., Kuse, M., Isobe, M., Bouteau, F., & Kawano, T. (2009). Prevention of copper-induced calcium influx and cell death by prion-derived peptide in suspension-cultured tobacco cells. Zeitschrift fur Naturforschung, 64c, 441–417.

    Google Scholar 

  • Kangasjärvi, J., Talvinen, J., Utriainen, M., & Karjalainen, R. (1994). Plant defence systems induced by ozone. Plant, Cell and Environment, 17, 783–794.

    Google Scholar 

  • Kangasjärvi, J., Jaspars, P., & Kollist, H. (2005). Signaling and cell death in ozone-exposed plants. Plant, Cell and Environment, 28, 1–16.

    Google Scholar 

  • Kangasjärvi, S., Neukermans, J., Li, S., Aro, EM., Noctor, G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses.Journal of Experimental Botany, 63,1619–1636.

    Google Scholar 

  • Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports, 21, 829–837.

    PubMed  CAS  Google Scholar 

  • Kawano, T., & Muto, S. (2000). Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco suspension culture. Journal of Experimental Botany, 51, 685–693.

    PubMed  CAS  Google Scholar 

  • Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N., & Muto, S. (1998). Salicylic acid induces extracellular generation of superoxide followed by an increase in cytosolic calcium ion in tobacco suspension culture: The earliest events in salicylic acid signal transduction. Plant and Cell Physiology, 39, 721–730.

    CAS  Google Scholar 

  • Kawano, T., Kawano, N., Muto, S., & Lapeyrie, F. (2001). Cation-induced superoxide generation in tobacco cell suspension culture is dependent on ion valence. Plant, Cell and Environment, 24, 1235–1241.

    CAS  Google Scholar 

  • Kawano, T., Kawano, N., Muto, S., & Lapeyrie, F. (2002). Retardation and inhibition of the cation-induced superoxide generation in BY-2 tobacco cell suspension culture by Zn2+ and Mn2+. Physiologia Plantarum, 114, 395–404.

    PubMed  CAS  Google Scholar 

  • Kawano, T., Kadono, T., Furuichi, T., Muto, S., & Lapeyrie, F. (2003). Aluminum-induced distortion in calcium signaling involving oxidative bursts and channel regulations in tobacco BY-2 cells. Biochemical and Biophysical Research Communications, 308, 35–42.

    PubMed  CAS  Google Scholar 

  • Kawano, T., Furuichi, T., & Muto, S. (2004a). Controlled free salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnology, 21, 319–335.

    CAS  Google Scholar 

  • Kawano, T., Tanaka, S., Kadono, T., & Muto, S. (2004b). Salicylic acid glucoside acts as a slow inducer of oxidative burst in tobacco suspension culture. Zeitschrift fur Naturforschung, 59c: 684–692.

    Google Scholar 

  • Kawano, T., Kadono, T., Fumoto, K., Lapeyrie, F., Kuse, M., Isobe, M., et al. (2004c). Aluminum as a specific inhibitor of plant TPC1 Ca2+ channels. Biochemical and Biophysical Research Communications, 324, 40–45.

    PubMed  CAS  Google Scholar 

  • Kerchev, P. I., Fenton, B., Foyer, C. H., & Hancock, R. D. (2012). Plant responses to insect herbivory: Interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant, Cell and Environment, 35, 441–453.

    PubMed  CAS  Google Scholar 

  • Kessmann, H., & Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754–756.

    PubMed  Google Scholar 

  • Khokon, M. A. R., Okuma, E., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., et al. (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell and Environment, 34, 434–443.

    PubMed  CAS  Google Scholar 

  • Knight, M. R., Campbell, A. K., Smith, S. M., & Trewavas, A. J. (1991). Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytosolic calcium. Nature, 352, 524–526.

    PubMed  CAS  Google Scholar 

  • Kotchoni, S. O., & Gachomo, E. W. (2006). The reactive oxygen species network pathways: An essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journal of Biosciences, 31, 389–404.

    PubMed  CAS  Google Scholar 

  • Kunihiro, S., Hiramatsu, T., & Kawano, T. (2011). Involvement of salicylic acid signal transduction in aluminum-responsive oxidative burst in Arabidopsis thaliana cell suspension culture. Plant Signaling and Behavior, 6, 611–616.

    PubMed  CAS  Google Scholar 

  • Lazof, D. B., Goldsmith, J. G., Rufty, T. W., & Linton, R. W. (1994). Rapid uptake of aluminum into cells of intact soybean root tips. A microanalytical study using secondary ion mass spectrometry. Plant physiology, 106, 1107–1114.

    PubMed  CAS  Google Scholar 

  • Lee, J.-S. (1998). The mechanism of stomatal closing by salicylic acid in Commelina communis L. Journal of Plant Biology, 41, 97–102.

    Google Scholar 

  • Li, G. M., Qing, S. F., Zheng, Q. Y., Hua, L. Z., Fu, S. Z., & Da, Y. S. (2000). Does aluminum inhibit pollen germination via extracellular calmodulin. Plant and Cell Physiology, 41, 372–376.

    Google Scholar 

  • Lin, C., Yu, Y., Kadono, T., Iwata, M., Umemura, K., Furuichi, T., et al. (2005). Action of aluminum, novel TPC1-type channel inhibitor, against salicylate-induced and cold shock-induced calcium influx in tobacco BY-2 cells. Biochemical and Biophysical Research Communications, 332, 823–830.

    PubMed  CAS  Google Scholar 

  • Lin, C., Kadono, T., Suzuki, T., Yoshizuka, K., Furuichi, T., Yokawa, K., et al. (2006). Mechanism for temperature-shift-responsive acute Ca2+ uptake in suspension-cultured tobacco and rice cells. Cryobiology and Cryotechnology, 52, 83–89.

    Google Scholar 

  • Lin, C., Yoshizuka, K., & Kawano, T. (2007). Effect of rare earth elements on cold-responsive Ca2+ signaling in tobacco cells. Cryobiology and Cryotechnology, 53, 7–11.

    Google Scholar 

  • Ma, J. F. (2000). Role of organic acids in detoxification of aluminum in higher plants. Plant and Cell Physiology, 41, 383–390.

    PubMed  CAS  Google Scholar 

  • Ma, J. F., Yamamoto, R., Nevin, D. J., Matsumoto, H., & Brown, P. H. (1999). Al binding in the epidermis cell wall inhibits cell elongation of okra hypocotyl. Plant and Cell Physiology, 40, 549–556.

    CAS  Google Scholar 

  • Malamy, J., Carr, J. P., Klessig, D. F., & Raskin, I. (1990). Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250, 1002–1004.

    PubMed  CAS  Google Scholar 

  • Manthe, B., Schulz, M., & Schnable, H. (1992). Effects of salicylic acid on growth and stomatal movement on Vicia faba L.: Evidence for salicylic acid metabolism. Journal of Chemical Ecology, 18, 1525–1539.

    CAS  Google Scholar 

  • Marino, D., Dunand, C., Puppo, A., & Pauly, N. (2012). A burst of plant NADPH oxidases. Trends in Plant Science, 17, 9–15.

    PubMed  CAS  Google Scholar 

  • Mehlhorn, H., Tabner, B. J., & Wellburn, A. R. (1990). Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum, 79, 377–383.

    CAS  Google Scholar 

  • Métraux, J.-P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., et al. (1990). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250, 1004–1006.

    PubMed  Google Scholar 

  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., et al. (2011). ROS signaling: The new wave? Trends in Plant Science, 16, 300–309.

    PubMed  CAS  Google Scholar 

  • Moeder, W., Barry, C. S., Tauriainen, A. A., Betz, C., Tuomainen, J., Utriainen, M., et al. (2002). Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozoneexposed tomato. Plant Physiology, 130, 1918–1926.

    PubMed  CAS  Google Scholar 

  • Møller, I. M. (2001). Plant Mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology, Plant Molecular Biology, 52, 561–591.

    Google Scholar 

  • Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.

    PubMed  Google Scholar 

  • Mori, I. C., & Schroeder, J. I. (2004). Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiology, 135, 702–708.

    PubMed  CAS  Google Scholar 

  • Mori, I. C., Pinontoan, R., Kawano, T., & Muto, S. (2001). Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant and Cell Physiology, 42, 1383–1388.

    PubMed  CAS  Google Scholar 

  • Muto, S. (1993). Intracellular Ca2+ messenger system in plants. International Review of Cytology, 142, 305–345.

    Google Scholar 

  • Muto, S., & Miyachi, S. (1977). Properties of a protein activator of NAD kinase from plants. Plant Physiology, 59, 55–60.

    PubMed  CAS  Google Scholar 

  • Noctor, G., De Paepe, R., & Foyer, C. H. (2007). Mitochondrial redox biology and homeostasis in plants. Trends in Plant Science, 12, 125–134.

    PubMed  CAS  Google Scholar 

  • Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., et al. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. Journal of Biological Chemistry, 283, 8885–8892.

    PubMed  CAS  Google Scholar 

  • Ogawa, D., Nakajima, N., Sato, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant and Cell Physiology, 46, 1062–1072.

    PubMed  CAS  Google Scholar 

  • Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels, C., Sandermann, H, Jr, et al. (2000). Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell, 12, 1849–1862.

    PubMed  CAS  Google Scholar 

  • Overmyer, K., Brosche, M., Pellinen, R., Kuittinen, T., Tuominen, H., Ahlfors, R., et al. (2005). Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death 1 mutant. Plant Physiology, 137, 1092–1104.

    PubMed  CAS  Google Scholar 

  • Pasqualini, S., Piccioni, C., Reale, L., Ederli, L., Torre, G. D., & Ferranti, F. (2003). Ozoneinduced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiology, 133, 1122–1134.

    PubMed  CAS  Google Scholar 

  • Pell, E. J., Schlagnhaufer, C. D., & Arteca, R. N. (1997). Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum, 100, 264–273.

    CAS  Google Scholar 

  • Piñeros, M., & Tester, M. (1997). Calcium channels in higher plant cells: Selectivity, regulation and pharmacology. Journal of Experimental Botany, 48, 551–577.

    PubMed  Google Scholar 

  • Rainsford, D. K. (1984). Aspirin and Salicylates. London: Butterworth.

    Google Scholar 

  • Rao, M. V., & Davis, K. R. (2001). The physiology of ozone induced cell death. Planta, 213, 682–690.

    PubMed  CAS  Google Scholar 

  • Rao, M. V., Koch, J. R., & Davis, K. R. (2000). Ozone: A tool for probing programmed cell death in plants. Plant Molecular Biology, 44, 345–358.

    PubMed  CAS  Google Scholar 

  • Raz, V., & Fluhr, R. (1992). Calcium requirement for ethylene-dependent responses. Plant Cell, 4, 1123–1130.

    PubMed  CAS  Google Scholar 

  • Renaut, J., Bohler, S., Hausman, J. F., Hoffmann, L., Sergeant, K., Ahsan, N., et al. (2009). The impact of atmospheric composition on plants: A case study of ozone and poplar. Mass Spectrometry Reviews, 28, 495–516.

    PubMed  CAS  Google Scholar 

  • Rhoads, D. M., & McIntosh, L. (1992). Salicylic acid regulation of respiration in higher plants: Alternative oxidase expression. Plant Cell, 4, 1131–1139.

    PubMed  CAS  Google Scholar 

  • Runeckles, V. C., & Vaartnou, M. (1997). EPR evidence for superoxide anion formation in leaves during exposure to low levels of ozone. Plant, Cell and Environment, 20, 306–314.

    CAS  Google Scholar 

  • Sagone, A. L., & Husney, R. M. (1987). Oxidation of salicylates by stimulated granulocytes: Evidence that these drugs act as free radical scavengers in biological systems. Journal of Immunology, 138, 2127–2183.

    Google Scholar 

  • Sandermann, H., Ernst, D., Heller, W., & Langebertles, C. (1998). Ozone: An abiotic elicitor of plant defense reaction. Trends in Plant Science, 3, 47–50.

    Google Scholar 

  • Sanders, D., Pelloux, J., Brownlee, C., & Harper, J. F. (2002). Calcium at the crossroads of signaling. Plant Cell, 14, S401–S417.

    PubMed  CAS  Google Scholar 

  • Schneider-Müller, S., Kurosaki, F., & Nishi, A. (1994). Role of salicylic acid and intracellular Ca2+ in the induction of chitinase activity in carrot suspension culture. Physiological and Molecular Plant Pathology, 45, 101–109.

    Google Scholar 

  • Schraudner, M., Moeder, W., Wiese, C., Van Camp, W., Inze, D., Langebartels, C., et al. (1998). Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. The Plant Journal, 16, 235–245.

    PubMed  CAS  Google Scholar 

  • Scott, I. M., Dat, J. M., Lopez-Delgado, H., & Foyer, C. H. (1999). Salicylic acid and hydrogen peroxide in abiotic stress signaling in plants. Phyton, 39, 13–17.

    CAS  Google Scholar 

  • Shang, Z. L., Ma, L. G., Zhang, H. L., He, R. R., Wang, X. C., Cui, S. J., et al. (2005). Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM. Plant and Cell Physiology, 46, 598–608.

    PubMed  CAS  Google Scholar 

  • Sharma, Y. K., & Davis, K. R. (1997). The effect of ozone on antioxidant responses in plants. Free Radical Biology and Medicine, 23, 480–488.

    PubMed  CAS  Google Scholar 

  • Skulachev, V. P. (2012). What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.

    CAS  Google Scholar 

  • Ströher, E., & Dietz, K. J. (2006). Concepts and approaches towards understanding the cellular redox proteome. Plant Biology, 8, 407–418.

    PubMed  Google Scholar 

  • Sukharev, S. I., Martinac, B., Arshavsky, V. Y., & Kung, C. (1993). Two types of mechanosensitive channels in the Escherichia coli cell envelope: Solubilization and functional reconstitution. Biophysical Journal, 65, 177–183.

    PubMed  CAS  Google Scholar 

  • Sun, E. J., & Kang, H. W. (2003). Tobacco clones derived from tissue culture with supersensitivity to ozone. Environmental Pollution, 125, 111–115.

    PubMed  CAS  Google Scholar 

  • Swanson, S. J., Choi, W.-G., Chanoca, A., & Gilroy, S. (2011). In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annual Review of Plant Biology, 62, 273–297.

    PubMed  CAS  Google Scholar 

  • Tamaoki, M. (2008). The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signaling and Behavior, 3, 166–174.

    PubMed  Google Scholar 

  • Tamaoki, M., Matsuyama, T., Kanna, M., Nakajima, N., Kubo, A., Aono, M., et al. (2003). Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta, 216, 552–560.

    PubMed  CAS  Google Scholar 

  • Tran, D., Kadono, T., Molas, M. L., Errakhi, R., Briand, J., Biligui, B., et al. (2013). A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells. Plant, Cell and Environment, 36, 569–578.

    Google Scholar 

  • Umemura, K., Satoh, J., Iwata, M., Uiozumi, N., Koga, J., Kawano, T., et al. (2009). Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. The Plant Journal, 57, 463–472.

    PubMed  CAS  Google Scholar 

  • Vahala, J., Ruonala, R., Keinanen, M., Tuominen, H., & Kangasjarvi, J. (2003). Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiology, 132, 185–195.

    PubMed  CAS  Google Scholar 

  • Vlot, A. C., Dempsey, D. M., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.

    PubMed  CAS  Google Scholar 

  • Weissman, G. (1991). Aspirin. Scientific American, 264, 84–90.

    Google Scholar 

  • White, R. F. (1979). Acetylsalicylic acid induces resistance to tobacco mosaic virus in tobacco. Virology, 99, 410–412.

    PubMed  CAS  Google Scholar 

  • Yalpani, N., Enyedi, A. J., Leon, J., & Raskin, I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193, 372–376.

    CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Devi, S. R., Rikiishi, S., Matsumoto, H. (2002). Auminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology, 128, 63–72.

    Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Devi, S. R., Rikiishi, S., & Matsumoto, H. (2003). Oxidative stress triggered by aluminum in plant roots. Plant and Soil, 255, 239–243.

    CAS  Google Scholar 

  • Yokawa, K., Kagenishi, T., & Kawano, T. (2011a). Prevention of oxidative DNA degradation by copper-binding peptides. Bioscience, Biotechnology, and Biochemistry, 75, 1377–1379.

    PubMed  CAS  Google Scholar 

  • Yokawa, K., Kagenishi, T., Kawano, T., Mancuso, S., & Baluška, F. (2011b). Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signaling and Behavior, 6, 1457–1461.

    Google Scholar 

  • Yoshida, S., Tamaoki, M., Ioki, M., Ogawa, D., Sato, Y., Aono, M., et al. (2009). Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiologia Plantarum, 136, 284–298.

    PubMed  CAS  Google Scholar 

  • Yoshioka, H., Sugie, K., Park, H. J., Maeda, H., Tsuda, N., Kawakita, K., et al. (2001). Induction of plant gp91phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Molecular Plant-Microbe Interactions, 14, 725–736.

    PubMed  CAS  Google Scholar 

  • Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., et al. (2003). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell, 15, 706–718.

    PubMed  CAS  Google Scholar 

  • Yoshioka, H., Bouteau, F., & Kawano, T. (2008). Discovery of oxidative burst in the field of plant immunity: Looking back at the early pioneering works and towards the future development. Plant Signaling and Behavior, 3, 153–155.

    PubMed  Google Scholar 

  • Yukihiro, M., Hiramatsu, T., Bouteau, F., Kadono, T., & Kawano, T. (2012). Peroxyacetyl nitrate-induced oxidative and calcium signaling events leading to cell death in ozone-sensitive tobacco cell-line. Plant Signaling and Behavior, 7, 113–120.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Kawano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kawano, T., Hiramatsu, T., Bouteau, F. (2013). Signaling Role of Salicylic Acid in Abiotic Stress Responses in Plants. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_11

Download citation

Publish with us

Policies and ethics