Skip to main content

Luminescence Dating, Uncertainties and Age Range

  • Reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Luminescence ages have an uncertainty of at least 4–5 %, mainly due to systematic errors in both dose rate (conversion factors) and equivalent dose (source calibration) estimation. In most cases, the uncertainty will be higher, due to random errors (e.g., spread in equivalent doses) or uncertainty in assumptions (e.g., water content fluctuations, burial history). Dating is possible for a wide age range of a few decades to about half a million years, although uncertainties are usually relatively large toward the extremes of this range.

Uncertainties

As with any method, results of luminescence dating contain errors or uncertainties. Adequate assessment of errors is important, for instance, to correctly assess rates of processes or leads and lags in natural or anthropogenic systems, or contemporaneity of different sites (e.g., Guerin et al., 2013). It is common practice in the luminescence community to present 1-sigma uncertainties, implying that there is a 68 % likelihood...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adamiec, G., and Aitken, M. J., 1998. Dose-rate conversion factors: update. Ancient TL, 16, 37–50.

    Google Scholar 

  • Aitken, M. J., 1998. An Introduction to Optical Dating. London: Oxford University Press, p. 267.

    Google Scholar 

  • Ankjaergaard, C., Jain, M., and Wallinga, J., 2013. Towards dating quaternary sediments using the quartz violet stimulated luminescence (VSL) signal. Quaternary Geochronology, 18, 99–109.

    Article  Google Scholar 

  • Arnold, L. J., and Roberts, R. G., 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures. Quaternary Geochronology, 4, 204–230.

    Article  Google Scholar 

  • Bailey, R. M., 2004. Paper I – simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating. Radiation Measurements, 38, 299–310.

    Article  Google Scholar 

  • Ballarini, M., Wallinga, J., Murray, A. S., Van Heteren, S., Oost, A. P., Bos, A. J. J., and Van Eijk, C. W. E., 2003. Optical dating of young coastal dunes on a decadal time scale. Quaternary Science Reviews, 22, 1011–1017.

    Article  Google Scholar 

  • Bos, A. J. J., Wallinga, J., Johns, C., Abellon, R. D., Brouwer, J. C., Schaart, D. R., and Murray, A. S., 2006. Accurate calibration of a laboratory beta particle dose rate for dating purposes. Radiation Measurements, 41, 1020–1025.

    Article  Google Scholar 

  • Brennan, B. J., 2003. Beta doses to spherical grains. Radiation Measurements, 37, 299–303.

    Article  Google Scholar 

  • Buylaert, J. P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and Sohbati, R., 2012. A robust feldspar luminescence dating method for middle and late Pleistocene sediments. Boreas, 41, 435–451.

    Article  Google Scholar 

  • Buylaert, J. P., Murray, A. S., Gebhardt, A. C., Sohbati, R., Ohlendorf, C., Thiel, C., Wastegard, S., and Zolitschka, B., 2013. The PASADO science team 1. Quaternary Science Reviews, 71, 70–80.

    Article  Google Scholar 

  • Cunningham, A. C., and Wallinga, J., 2010. Selection of integration time-intervals for quartz OSL decay curves. Quaternary Geochronology, 5, 657–666.

    Article  Google Scholar 

  • Cunningham, A. C., and Wallinga, J., 2012. Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology, 12, 98–106.

    Article  Google Scholar 

  • Cunningham, A. C., Wallinga, J., and Minderhoud, P., 2011a. Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating. Geochronometria, 38, 424–431.

    Article  Google Scholar 

  • Cunningham, A. C., Bakker, M. A. J., Van Heteren, S., Van der Valk, B., Van der Spek, A. J. F., Schaart, D. R., and Wallinga, J., 2011b. Extracting storm-surge data from coastal dunes for improved assessment of flood risk. Geology, 39, 1063–1066.

    Article  Google Scholar 

  • Cunningham, A. C., DeVries, D. J., and Schaart, D. R., 2012. Experimental and computational simulation of beta-dose heterogeneity in sediment. Radiation Measurements, 47, 1060–1067.

    Article  Google Scholar 

  • Duller, G. A. T., 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL, 25, 15–24.

    Google Scholar 

  • Duller, G. A. T., 2008. Single-grain optical dating of quaternary sediments: why aliquot size matters in luminescence dating. Boreas, 37, 589–612.

    Article  Google Scholar 

  • Duller, G. A. T., and Wintle, A. G., 2012. A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quaternary Geochronology, 7, 6–20.

    Article  Google Scholar 

  • Galbraith, R. F., and Roberts, R. G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology, 11, 1–27.

    Article  Google Scholar 

  • Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry, 41, 339–364.

    Article  Google Scholar 

  • Guerin, G., Mercier, N., and Adamiec, G., 2011. Dose rate conversion factors: update. Ancient TL, 29, 5–8.

    Google Scholar 

  • Guerin, G., Murray, A. S., Jain, M., Thomsen, K. J., and Mercier, N., 2013. How confident are we in the chronology of the transition between Howieson’s Poort and Still Bay? Journal of Human Evolution, 64, 314–317.

    Article  Google Scholar 

  • Huntley, D. J., and Baril, M. R., 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL, 15, 11–13.

    Google Scholar 

  • Huntley, D. J., and Hancock, R. G. V., 2001. The Rb contents of the K-feldspar grains being measured in optical dating. Ancient TL, 19, 43–46.

    Google Scholar 

  • Kars, R. H., Busschers, F. S., and Wallinga, J., 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology, 12, 74–86.

    Article  Google Scholar 

  • Kars, R. H., Reimann, T., Ankjaergaard, A., and Wallinga, J. 2014. Bleaching of the post-IR IRSL signal: new insights for feldspar luminescence dating. Boreas, 43, 780–791.

    Google Scholar 

  • Madsen, A. T., and Murray, A. S., 2009. Optically stimulated luminescence dating of young sediments; A review. Geomorphology, 109, 3–16.

    Article  Google Scholar 

  • Madsen, A. T., Murray, A. S., Andersen, T. J., Pejrup, M., and Breuning-Madsen, H., 2005. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Marine Geology, 214, 251–268.

    Article  Google Scholar 

  • Murray, A. S., and Olley, J. M., 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria, 21, 314–317.

    Google Scholar 

  • Murray, A. S., and Wintle, A. G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32, 57–73.

    Article  Google Scholar 

  • Murray, A. S., and Wintle, A. G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements, 37, 377–381.

    Article  Google Scholar 

  • Murray, A., Buylaert, J.-P., Henriksen, M., Svendsen, J.-I., and Mangerud, J., 2008. Testing the reliability of quartz OSL ages beyond the Eemian. Radiation Measurements, 43, 776–780.

    Article  Google Scholar 

  • Olley, J. M., Roberts, R. G., and Murray, A. S., 1997. Disequilibria in the uranium decay series in sedimentary deposits at Allen’s cave, nullarbor plain, Australia: implications for dose rate determinations. Radiation Measurements, 27, 433–443.

    Article  Google Scholar 

  • Prescott, J. R., and Hutton, J. T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements, 23, 497–500.

    Article  Google Scholar 

  • Rhodes, E. J., Bronk-Ramsey, C., Outram, Z., Batt, C., Willis, L., et al., 2003. Bayesian methods applied to the interpretation of multiple OSL dates: high precision sediment age estimates from Old Scatness Broch excavations, Shetland Isles. Quaternary Science Reviews, 22, 1231–1244.

    Article  Google Scholar 

  • Rink, W. J., and Lopez, G. I., 2010. OSL-based lateral progradation and aeolian sediment accumulation rates for the Apalachicola Barrier Island complex, North Gulf of Mexico, Florida. Geomorphology, 123, 330–342.

    Article  Google Scholar 

  • Rink, W. J., Mercier, N., Mihailović, D., Morley, M. W., Thompson, J. W., and Roksandic, M., 2013. New radiometric ages for the BH-1 hominin from Balanica (Serbia): implications for understanding the role of the Balkans in middle Pleistocene human evolution. PLoS ONE, 8(2), e54608, doi:10.1371/journal.pone.0054608.

    Article  Google Scholar 

  • Roberts, H. M., and Plater, A. J., 2007. Reconstruction of Holocene foreland progradation using optically stimulated luminescence (OSL) dating: an example from Dungeness, UK. The Holocene, 17, 495–505.

    Article  Google Scholar 

  • Sim, A. K., Thomsen, K. J., Murray, A. S., Jacobsen, G., Drysdale, R., and Erskine, W., 2014. Dating recent floodplain sediments in the Hawkesbury-Nepean river system, eastern Australia using single-grain quartz OSL. Boreas, 43, 1–21.

    Article  Google Scholar 

  • Thiel, C., Buylaert, J.-P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., and Frechen, M., 2011. Luminescence dating of the Stratzing loess profile (Austria) – testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International, 234, 23–31.

    Article  Google Scholar 

  • Thomsen, K. J., Murray, A. S., Bøtter-Jensen, L., and Kinahan, J., 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements, 42, 370–379.

    Article  Google Scholar 

  • Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L., 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements, 43, 1474–1486.

    Article  Google Scholar 

  • Thomsen, K. J., Murray, A. S., and Jain, M., 2012. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions. Radiation Measurements, 47, 732–739.

    Article  Google Scholar 

  • Vandenberghe, D., De Corte, F., Buylaert, J. P., Kučera, J., and Van den Haute, P., 2008. On the internal radioactivity in quartz. Radiation Measurements, 43, 771–775.

    Article  Google Scholar 

  • Wallinga, J., and Bos, I. J., 2010. Optical dating of clastic lake-fill sediments – a feasibility study in the Holocene Rhine delta (western Netherlands). Quaternary Geochronology, 5, 602–610.

    Article  Google Scholar 

  • Wallinga, J., Murray, A. S., and Wintle, A. G., 2000. The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements, 32, 529–533.

    Article  Google Scholar 

  • Wallinga, J., Bos, A. J. J., Dorenbos, P., Murray, A. S., and Schokker, J., 2007. A test case for anomalous fading correction in IRSL dating. Quaternary Geochronology, 2, 216–221.

    Article  Google Scholar 

  • Wintle, A. G., and Murray, A. S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single aliquot regeneration dating protocols. Radiation Measurements, 41, 369–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Wallinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Wallinga, J., Cunningham, A.C. (2015). Luminescence Dating, Uncertainties and Age Range. In: Jack Rink, W., Thompson, J.W. (eds) Encyclopedia of Scientific Dating Methods. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6304-3_197

Download citation

Publish with us

Policies and ethics