Skip to main content

Rubisco Assembly: A Research Memoir

  • Chapter
  • First Online:
Plastid Development in Leaves during Growth and Senescence

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 36))

Summary

Rubisco is responsible for net carbon dioxide fixation. Due to the high concentration of oxygen in the atmosphere and the relatively low concentration of carbon dioxide, Rubisco “misfires” frequently, splitting a molecule of ribulose bisphosphate rather than adding carbon to it. Evolution has worked to minimize this tendency, but the strategies have been varied, from slight changes in kinetic properties to wholesale re-organization of leaf anatomy. Rubisco consists of two types of subunits in higher plants, green algae, and certain cyanobacteria. The large (L) subunit is encoded in chloroplast DNA and the small (S) subunit in the nucleus. The discovery that Rubisco is encoded by genes in both the chloroplast and the nucleus of higher plants and green algae has motivated considerable research on the biogenesis and biochemistry of Rubisco. This article describes the role of my laboratory in the study of the assembly mechanism of this important enzyme in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CABP:

Carboxy – arabinitol – bisphosphate;

(n-)Cpn(x):

Chaperonin (n-) represents a biological source such as a chloroplast, and x is the approximate molecular weight in kDa;

GroEL:

Any chaperonin homologous to the E. coli form a tetrade­camer of 60 kDa subunits;

GroES:

The co-chaperonin of GroEL that binds to GroEL and facilitates protein folding;

L-subunit or RbcL –:

The larger of two subunits of Rubisco of eukaryotes or the catalytic subunit of any Rubisco;

Rubisco:

Ribulose 1,5 bisphosphate carboxylase/oxygenase (EC 4.1.1.39);

S-subunit or RbcS:

The smaller of two subunits of Rubisco found in eukaryotic organisms

References

  • Andersson I (2008) Catalysis and regulation in Rubisco. J Exp Bot 59:1555–1568

    Article  PubMed  CAS  Google Scholar 

  • Andrews TJ, Ballment B (1983) The function of the small subunits of ribulose bisphosphate carboxylase-oxygenase. J Biol Chem 258:7514–7518

    PubMed  CAS  Google Scholar 

  • Andrews TJ, Whitney SM (2003) Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch Biochem Biophys 15414:159–169

    Article  Google Scholar 

  • Apetri AC, Horwich AL (2008) Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc Natl Acad Sci USA 105:17351–17355

    Article  PubMed  CAS  Google Scholar 

  • Balaji B, Gilson M, Roy H (2006) Binding of a transition state analog to newly synthesized Rubisco. Photosynth Res 89:43–48

    Article  PubMed  CAS  Google Scholar 

  • Bar-Nun S, Schantz R, Ohad I (1977) Appearance and composition of chlorophyll-protein complexes I and II during chloroplast membrane biogenesis in Chlamydomonas reinhardtii y-1. Biochim Biophys Acta 459:451–467

    Article  PubMed  CAS  Google Scholar 

  • Barraclough R, Ellis RJ (1980) Assembly of newly synthesized large subunits into ribulose bisphosphate carboxylase in isolated pea chloroplasts. Biochim Biophys Acta 608:19–31

    Article  PubMed  CAS  Google Scholar 

  • Blair GE, Ellis RJ (1976) Protein synthesis in chloroplasts. I. Light driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319:223–234

    Google Scholar 

  • Bloom M, Milos P, Roy H (1983) Light dependent assembly of ribulose bisphosphate carboxylase. Proc Natl Acad Sci USA 80:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Cushman JC (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332

    Article  PubMed  Google Scholar 

  • Bowes G, Ogren W, Hageman R (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722

    Article  PubMed  CAS  Google Scholar 

  • Brutnell TP, Sawers RJH, Mant A, Langdale JA (1999) BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcL gene of maize. Plant Cell 11:849–864

    PubMed  CAS  Google Scholar 

  • Cannon S, Wang P, Roy H (1986) Inhibition of assembly of ribulose bisphosphate carboxylase by antibody to a binding protein. J Cell Biol 103:1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Chua N-H, Schmidt GW (1978) Post-translational import into intact chloroplasts of a precursor to the small subunit of ribulose −1,5- bisphosphate carboxylase. Proc Natl Acad Sci USA 75:6110–6114

    Article  PubMed  CAS  Google Scholar 

  • Chua N-H, Blobel G, Siekevitz P, Palade GE (1973) Attachment of chloroplast polysomes to thylakoid membranes in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 70:1554

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Mayfield SP (1997) Translational regulation of gene expression in plants. Curr Opin Biotechnol 8:189–194

    Article  PubMed  CAS  Google Scholar 

  • Cohen I, Knopf JA, Irihimovitch V, Shapira M (2005) A proposed mechanism for the inhibitory effects of oxidative stress on Rubisco assembly and its subunit expression. Plant Physiol 137(2):738–746

    Article  PubMed  CAS  Google Scholar 

  • Cohen I, Sapir Y, Shapira M (2006) A conserved mechanism controls translation of Rubisco large subunit in different photosynthetic organisms. Plant Physiol 141:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Criddle RS, Dau B, Kleinkopf GE, Huffaker RC (1970) Differential synthesis of ribulosediphosphate carboxylase subunits. Biochem Biophys Res Commun 41:621–627

    Article  PubMed  CAS  Google Scholar 

  • Deng XW, Tonkyn JC, Peter GF, Thornber JP, Gruissem W (1989) Post-transcriptional control of plastid mRNA accumulation during adaptation of chloroplasts to different light quality environments. Plant Cell 1:645–654

    PubMed  CAS  Google Scholar 

  • Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitanen PV (2000) Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 275:11829–11835

    Article  PubMed  CAS  Google Scholar 

  • Drum HE, Margulies MM (1969) In vitro protein synthesis by plastids of Phaseolus vulgaris IV. Amino acid incorporation by etioplasts and effect of illumination of leaves on incorporation by plastids. Plant Physiol 45:435–442

    Article  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  PubMed  CAS  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1981) Chloroplast proteins: synthesis, transport, and assembly. Annu Rev Plant Physiol 32:111–137

    Article  CAS  Google Scholar 

  • Emlyn-Jones D, Woodger FJ, Price GD, Whitney SM (2006) RbcX can function as a Rubisco chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell Physiol 47:1630–1640

    Article  PubMed  CAS  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    PubMed  CAS  Google Scholar 

  • Geiger DR, Servaites JC (1994) Diurnal regulation of photosynthetic carbon metabolism in c3 plants. Annu Rev Plant Physiol Plant Mol Biol 45:235–256

    Article  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    Article  PubMed  CAS  Google Scholar 

  • Gooding LR, Roy H, Jagendorf AT (1973) Immunological identification of nascent subunits of wheat ribulose diphosphate carboxylase on ribosomes of both chloroplast and cytoplasmic origin. Arch Biochem Biophys 159:324–335

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Margulies M (1986) Synthesis of large subunit of ribulose bisphosphate carboxylase by thylakoid bound ribosomes from spinach chloroplasts. Arch Biochem Biophys 244:630–640

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Ellis RJ (1986) Purification and properties of RuBisCO LSU binding protein. Plant Physiol 80:269–276

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennnis DT, Georgeopooulos C, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  PubMed  CAS  Google Scholar 

  • Houtz RL, Magnani R, Hayak NR, Dirk LMA (2008) Co- and post-translational modifications in Rubisco: unanswered questions. J Exp Bot 59:1635–1645

    Article  PubMed  CAS  Google Scholar 

  • Hubbs A, Roy H (1992a) Synthesis and assembly of large subunits into ribulose bisphosphate carboxylase/oxygenase in pea chloroplast extracts. Plant Physiol 100:272–281

    Article  PubMed  CAS  Google Scholar 

  • Hubbs A, Roy H (1992b) Assembly of in vitro synthesized large subunits into Rubisco is sensitive to Cl-, requires ATP, and does not proceed when L subunits are synthesized at 32°C. Plant Physiol 101:523–533

    Google Scholar 

  • Hubbs A, Roy H (1993) Assembly of in vitro synthesized large subunits into ribulose bisphosphate carboxylase/oxygenase: formation and discharge of an l8-like species. J Biol Chem 268:13519–13525

    PubMed  CAS  Google Scholar 

  • Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman F-A, Vallon O (2010) MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcl mRNA in Chlamydomonas and Arabidopsis. Plant Cell 22:234–248

    Article  PubMed  CAS  Google Scholar 

  • Karkehabadi S, Peddi SR, Anwaruzzaman M, Taylor TC, Cederlund A, Genkov T, Andersson I, Spreitzer RJ (2005) Chimeric small subunits influence catalysis without causing global conformational changes in the crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 44:9851–9861

    Article  PubMed  CAS  Google Scholar 

  • Kirk JTO (1986) Roots: the discovery of chloroplast DNA. Bioessays 4:36–38

    Article  CAS  Google Scholar 

  • Koumoto Y, Shimada T, Kondo M, Takao T, Shimonishi Y, Hara-Nishimura I, Nishimura M (1999) Chloroplast Cpn20 forms a tetrameric structure in Arabidopsis thaliana. Plant J 17:467–477

    Article  PubMed  CAS  Google Scholar 

  • Leon P, Arroyo A (1998) Nuclear control of plastid and mitochondrial development in higher plants. Annu Rev Plant Physiol Plant Mol Biol 49:453–480

    Article  PubMed  CAS  Google Scholar 

  • Levine RP, Armstrong JJ, Surzycki S, Moll B (1971) Genetic transcription and translation specifying chloroplast components in Chlamydomonas reinhardti. Biochemistry 10(4):692–701

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–204

    Article  PubMed  CAS  Google Scholar 

  • Margulies MM, Michaels A (1974) Ribosomes bound to chloroplast membranes in Chlamydomonas reinhardtii. J Cell Biol 60:65–77

    Article  PubMed  CAS  Google Scholar 

  • Milos P, Roy H (1984) ATP-released large subunits participate in the assembly of ribulose bisphosphate carboxylase. J Cell Biochem 24:153–162

    Article  PubMed  CAS  Google Scholar 

  • Minami E, Shinohara K, Kawakami N, Watanabe A (1988) Localization and properties of transcripts of psbA and rbcL genes in the stroma of spinach chloroplast. Plant Cell Physiol 29:1303–1309

    CAS  Google Scholar 

  • Mounolou J-C, Lacroute F (2005) Mitochondrial DNA: an advance in eukaryotic cell biology in the 1960s. Biol Cell 97:743–748

    Article  PubMed  CAS  Google Scholar 

  • Mullet JE (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39:475–502

    Article  CAS  Google Scholar 

  • Portis AR, Li C, Wang D, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Rodermel SR, Abbott MS, Bogorad L (1988) Nuclear organelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell 55:673–681

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Andrews TJ (2000) Rubisco: assembly and mechanism. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism, vol 9. Kluwer, Dordrecht/Boston/London, pp 53–83

    Chapter  Google Scholar 

  • Roy H, Gooding LR, Jagendorf AT (1973) Formation release and identification of peptidyl-(3H)-puromycins from wheat leaf ribosomes in vitro. Arch Biochem Biophys 159:312–323

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Patterson R, Jagendorf AT (1976) Identification of the small subunit of ribulose-1,5-bisphosphate carboxylase as a product of wheat leaf cytoplasmic ribosomes. Arch Biochem Biophys 172:64–73

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Costa KA, Adari H (1978) Free subunits of ribulose bisphosphate carboxylase in pea leaves. Plant Sci Lett 11:159–168

    Article  CAS  Google Scholar 

  • Roy H, Adari H, Costa KA (1979) Characterization of free subunits of ribulose bisphosphate carboxylase. Plant Sci Lett 16:305–318

    Article  CAS  Google Scholar 

  • Roy H, Bloom M, Milos P, Monroe M (1982) Studies on the assembly of large subunits of ribulose-1,5-bisphosphate carboxylase in isolated pea chloroplasts. J Cell Biol 94:20–27

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Hubbs A, Cannon S (1988a) Stability and dissociation of the large subunit RuBisCO binding protein in vitro and in vivo. Plant Physiol 86:50–53

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Chaudhari P, Cannon S (1988b) Incorporation of large subunits into ribulose bisphosphate carboxylase in chloroplast extracts: influence of small subunits and conditions during synthesis. Plant Physiol 86:44–49

    Article  PubMed  CAS  Google Scholar 

  • Rutner AC, Lane MD (1967) Nonidentical subunits of ribulose diphosphate carboxylase. Biochem Biophys Res Commun 28:531–537

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W, Miyagishima SY, Jarvis P (2008) Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. In: The Arabidopsis book. DOI: 10.1199/tab.0110. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Saschenbrecker S, Bracher A, Rao KV, Rao BV, Hartl FU, Hayer-Hartl M (2007) Structure and function of rbcx, an assembly chaperone for hexadecameric rubisco. Cell 129:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GW, Mishkind ML (1983) Rapid degradation of unassembled ribulose 15-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci USA 80:2632–2636

    Article  PubMed  CAS  Google Scholar 

  • Sharkia R, Bonshtien AL, Mizrahi I, Weiss C, Niv A, Lustig A, Viitanen PV, Azem A (2003) On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20. Biochim Biophys Acta 1651:76–84

    Article  PubMed  CAS  Google Scholar 

  • Shiho T, Sawaya MR, Kerfeld CA (2007) Structure of the RuBisCO chaperone RbcX from Synechocystis sp. PCC6803. Acta Crystallogr D 63:1109–1112

    Article  Google Scholar 

  • Spreitzer R, Salvucci M (2003) RUBISCO: structure regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  Google Scholar 

  • Strittmatter P, Soll J, Bölter B (2010) The chloroplast protein import machinery: a review. Methods Mol Biol 619:307–321

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A (2009) Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environ 32:417–427

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS (2008) Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot 59:1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Sumana B, Petracek ME (2003) Light control of nuclear gene mRNA abundance and translation in tobacco. Plant Physiol 133:1979–1990

    Article  PubMed  CAS  Google Scholar 

  • Thirumalai D, Lorimer GH (2001) Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct 30:245–269

    Article  PubMed  CAS  Google Scholar 

  • Tyagi NK, Fenton WA, Horwich AL (2009) GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Proc Natl Acad Sci USA 106:20264–20269

    Article  PubMed  CAS  Google Scholar 

  • Uchida H, Isono K, Tomizawa K-I, Iwano M, Yamashita H, Fukuzawa HC, Ohyama K, Yokota A (2005) A synthesis of Rubisco gene products is upregulated by increasing the copy number of rbcL gene in Chlamydomonas chloroplast genome, without increased accumulation of the two Rubisco subunits. Plant Biotech 22(2):145–149

    Article  CAS  Google Scholar 

  • Vierstra RD (1993) Protein degradation in plants. Annu Rev Plant Physiol Plant Mol Biol 44:385–410

    Article  CAS  Google Scholar 

  • Whitney SM, Andrews TJ (1998) The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae. Aust J Plant Physiol 25:131–138

    Article  CAS  Google Scholar 

  • Whitney SM, Andrews TJ (2001) The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13:193–205

    PubMed  CAS  Google Scholar 

  • Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J Exp Bot 59:1909–1921

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Baldet P, Hudson GS, Andrews TJ (2001) Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J Cell Mol Biol 26:535–547

    Article  CAS  Google Scholar 

  • Whitney SM, Kane HJ, Houtz RL, Sharwood RE (2009) Rubisco oligomers composed of linked small and large subunits assemble in tobacco plastids and have higher affinities for CO2 and O2. Plant Physiol 149:1887–1895

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering Enzyme, Rubisco. Plant Physiol 155:27–35

    Article  PubMed  CAS  Google Scholar 

  • Wostrikoff K, Stern D (2007) Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci USA 104:6466–6471

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in my laboratory has been supported by NIH, NSF, and for the most part the USDA. We got material help and advice from many colleagues, including RJ Ellis, S. Hemmingsen, G Lorimer and TJ Andrews, JC Salerno, and S Gutteridge. On behalf of my co-workers I extend our gratitude to all these and the many others, not specifically mentioned here, who encouraged or reviewed our work. It is fascinating to see the field continuing to expand in so many directions, such as the remarkably detailed elucidation of the mechanism of GroEL which I could not cover in detail here, the molecular genetic analysis of the enzymatic mechanism, and the molecular regulation of the biosynthesis of Rubisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roy, H. (2013). Rubisco Assembly: A Research Memoir. In: Biswal, B., Krupinska, K., Biswal, U. (eds) Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5724-0_6

Download citation

Publish with us

Policies and ethics