Skip to main content

On-Farm Evaluation of a Humic Product in Iowa (US) Maize Production

  • Conference paper
  • First Online:
Functions of Natural Organic Matter in Changing Environment

Abstract

The benefit to corn (Zea mays L.) production of a humic product derived from lignite was evaluated for 3 years under otherwise conventional crop management in Iowa farmers’ fields. A liquid extract, it was applied at a rate of 3.57 L ha−1, generally as a foliar spray mixed into routine pesticide applications during early stages of crop growth. In each of 3 years, hand-sampled corn plants collected at physiological maturity in 30–35 farmers’ fields across Iowa showed a significant increase in grain weight with product application in 70–80% of the cases, covering a range of soil types and grain yield levels. Mean increases were 630–940 kg ha−1, and these were inflated, as expected, compared to a limited number of yield increases estimated by mechanical combine, typically 310–630 kg ha−1, or about 5% of normal yield levels. Grain weight increases were associated with longer, thicker, and heavier cobs and slightly larger stover biomass. Plant nutrient concentrations were not affected at harvest. In-season measurements in a few intensively monitored farmers’ fields associated product application with slightly taller plants, increased leaf area, earlier onset of pollination, extended grain filling, and delayed senescence, i.e., extended duration of photosynthesis and decayed rotting of stems. Limited visual observations indicated great proliferation of roots, especially lateral roots. Ongoing data assessment will identify any environmental factors of product efficacy, an issue that to date remains unexplored in the humic product literature. Initial studies of alfalfa (Medicago sativa L.) found biomass increases with product application of 7–29%. A newly begun corn trial on nitrogen fertilizer response will estimate the amount of N fertilizer input that can be replaced by humic product application to save input costs and mitigate environmental degradation. The humic product increased economic yield in a large majority of cases by amounts that were agronomically modest but economically significant. Future work will expand to soybean (Glycine max (L.) Merr.) production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mention of companies, trade names, or commercial products in this abstract is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan C. Olk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Olk, D.C., Dinnes, D.L., Callaway, C., Raske, M. (2013). On-Farm Evaluation of a Humic Product in Iowa (US) Maize Production. In: Xu, J., Wu, J., He, Y. (eds) Functions of Natural Organic Matter in Changing Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5634-2_193

Download citation

Publish with us

Policies and ethics