Skip to main content

Modeling microRNA-Transcription Factor Networks in Cancer

  • Chapter
  • First Online:
MicroRNA Cancer Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

An increasing number of transcription factors (TFs) and microRNAs (miRNAs) is known to form feedback loops (FBLs) of interactions where a TF positively or negatively regulates the expression of a miRNA, and the miRNA suppresses the translation of the TF messenger RNA. FBLs are potential sources of instability in a gene regulatory network. Positive FBLs can give rise to switching behaviors while negative FBLs can generate periodic oscillations. This chapter presents documented examples of FBLs and their relevance to stem cell renewal and differentiation in gliomas. Feed-forward loops (FFLs) are only discussed briefly because they do not affect network stability unless they are members of cycles. A primer on qualitative network stability analysis is given and then used to demonstrate the network destabilizing role of FBLs. Steps in model formulation and computer simulations are illustrated using the miR-17-92/Myc/E2F network as an example. This example possesses both negative and positive FBLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CZ:

cancer zone

dTF:

differentiation transcription factor module

FFL:

feed-forward loop

FBL:

feedback loop

PA :

apoptosis factors

PC :

cell cycle factors

qNET:

qualitative network

sTF:

stem cell transcription factor module

TF:

transcription factor

References

  1. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  2. Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60

    Article  PubMed Central  PubMed  Google Scholar 

  3. Krutovskikh VA, Herceg Z (2010) Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers. Bioessays 32:894–904

    Article  CAS  PubMed  Google Scholar 

  4. Shalgi R, Brosh R, Oren M, Pilpel Y, Rotter V (2009) Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging (Albany NY) 1:762–770

    CAS  Google Scholar 

  5. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7:e1001101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339–1344

    Article  CAS  PubMed  Google Scholar 

  8. El Baroudi M, Corà D, Bosia C, Osella M, Caselle M (2011) A curated database of miRNA mediated feed-forward loops involving MYC as master regulator. PLoS One 6:e14742

    Article  PubMed Central  PubMed  Google Scholar 

  9. Takano S, Yamashita T, Ohneda O (2010) Molecular therapeutic targets for glioma angiogenesis. J Oncol 2010:351908

    PubMed Central  PubMed  Google Scholar 

  10. Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C (2008) E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett 263:157–163

    Article  CAS  PubMed  Google Scholar 

  11. Koul D (2008) PTEN signaling pathways in glioblastoma. Cancer Biol Ther 7:1321–1325

    Article  CAS  PubMed  Google Scholar 

  12. Le Bechec A, Portales-Casamar E, Vettter G, Moes M, Zindy P-J, Saumet A, Arenillas D, Theillet C, Wasserman W, Lecellier C-H, Friederich E (2011) MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in meta-regulation network model. BMC Bioinform 12:67

    Article  Google Scholar 

  13. Friard O, Re A, Taverna D, Bortoli MD, Cora’ D (2010) CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinform 11:435

    Article  Google Scholar 

  14. Gong X, Sun J, Zhao Z (2011) Gene regulation in glioblastoma: a combinatorial analysis of microRNAs and transcription factors. Int J Comput Biol Drug Des 4:111–126

    Article  PubMed  Google Scholar 

  15. Dong H, Luo L, Hong S, Siu H, Xiao Y, Jin L, Chen R, Xiong M (2010) Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma. BMC Syst Biol 4:163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. González-Gómez P, Sánchez P, Mira H (2011) MicroRNAs as regulators of neural stem cell-related pathways in glioblastoma multiforme. Mol Neurobiol 44:235–249

    Article  PubMed  Google Scholar 

  17. Godlewski J, Newton HB, Chiocca EA, Lawler SE (2010) MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ 17:221–228

    Article  CAS  PubMed  Google Scholar 

  18. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, Meyer HE, Reifenberger G (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20:539–550

    Article  CAS  PubMed  Google Scholar 

  19. Ernst A, Campos B, Meier J, Devens F, Liesenberg F, Wolter M, Reifenberger G, Herold-Mende C, Lichter P, Radlwimmer B (2010) De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29:3411–3422

    Article  CAS  PubMed  Google Scholar 

  20. Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupré I, Rolland D, Salon C, Godfraind C, de Fraipont F, Dhobb M, Pelletier L, Wion D, Gay E, Berger F, Issartel J-P (2011) MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One 6:e20600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105:19678–19683

    Article  CAS  PubMed  Google Scholar 

  22. de la Iglesia N, Puram SV, Bonni A (2009) STAT3 regulation of glioblastoma pathogenesis. Curr Mol Med 9:580–590

    Article  PubMed Central  PubMed  Google Scholar 

  23. Liu Y, Li C, Lin J (2010) STAT3 as a therapeutic target for glioblastoma. Anticancer Agents Med Chem 10:512–519

    Article  CAS  PubMed  Google Scholar 

  24. Brantley EC, Benveniste EN (2008) Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 6:675–684

    Article  CAS  PubMed  Google Scholar 

  25. Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, Ulrich S, Speich R, Huber LC (2009) Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res 104:1184–1191

    Article  CAS  PubMed  Google Scholar 

  26. Foshay KM, Gallicano GI (2009) MiR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol 326:431–443

    Article  CAS  PubMed  Google Scholar 

  27. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo Y-Y (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106:3207–3212

    Article  CAS  PubMed  Google Scholar 

  28. Aguda BD, Kim Y, Kim HS, Friedman A, Fine HA (2011) Qualitative network modeling of the Myc-p53 control system of cell proliferation and differentiation. Biophys J 101:2082–2091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Suh S-S, Yoo JY, Nuovo GJ, Jeon Y-J, Kim S, Lee TJ, Kim T, Bakàcs A, Alder H, Kaur B, Aqeilan RI, Pichiorri F, Croce CM (2012) MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci USA 109:5316–5321

    Article  CAS  PubMed  Google Scholar 

  30. Gao F-B (2008) Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci 31:20–26

    Article  PubMed Central  PubMed  Google Scholar 

  31. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) MiR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    Article  PubMed Central  PubMed  Google Scholar 

  32. Zhang P, Lathia JD, Flavahan WA, Rich JN, Mattson MP (2009) Squelching glioblastoma stem cells by targeting REST for proteasomal degradation. Trends Neurosci 32:559–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Qu Q, Shi Y (2009) Neural stem cells in the developing and adult brains. J Cell Physiol 221:5–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Park H-J, Kim J-K, Jeon H-M, Oh S-Y, Kim S-H, Nam D-H, Kim H (2010) The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells. Mol Cells 30:403–408

    Article  CAS  PubMed  Google Scholar 

  35. Hatanpaa KJ, Burma S, Zhao D, Habib AA (2010) Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 12:675–684

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, Liu C, Zong H, Rowitch DH, Barres BA, Verma IM, Kosik KS (2012) Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 31:1884–1895

    Article  CAS  PubMed  Google Scholar 

  37. Moore LM, Zhang W (2010) Targeting miR-21 in glioma: a small RNA with big potential. Expert Opin Ther Targets 14:1247–1257

    Article  CAS  PubMed  Google Scholar 

  38. Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, Iba H (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378:492–504

    Article  CAS  PubMed  Google Scholar 

  39. Brun M, Coles JE, Monckton EA, Glubrecht DD, Bisgrove D, Godbout R (2009) Nuclear factor I regulates brain fatty acid-binding protein and glial fibrillary acidic protein gene expression in malignant glioma cell lines. J Mol Biol 391:282–300

    Article  CAS  PubMed  Google Scholar 

  40. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene ­expression and promotes apoptosis. Mol Cell 26:745–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, Lopes B, Schiff D, Purow B, Abounader R (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69:7569–7576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8:712–715

    Article  CAS  PubMed  Google Scholar 

  43. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    Article  CAS  PubMed  Google Scholar 

  44. Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, Purow B, Abounader R (2010) microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9:1031–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sotillo E, Laver T, Mellert H, Schelter JM, Cleary MA, McMahon S, Thomas-Tikhonenko A (2011) Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene 30:2587–2594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, dePinho RA (2008) Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol 73:427–437

    Article  CAS  PubMed  Google Scholar 

  48. Fang X, Yoon J-G, Li L, Yu W, Shao J, Hua D, Zheng S, Hood L, Goodlett DR, Foltz G, Lin B (2011) The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics 12:11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Heng J-CD, Orlov YL, Ng H-H (2010) Transcription factors for the modulation of pluripotency and reprogramming. Cold Spring Harb Symp Quant Biol 75:237–244

    Article  CAS  PubMed  Google Scholar 

  50. Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D (2011) SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics Proteomics 8:139–147

    CAS  PubMed  Google Scholar 

  51. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

    Article  CAS  PubMed  Google Scholar 

  52. Kuijk EW, van Mil A, Brinkhof B, Penning LC, Colenbrander B, Roelen BAJ (2010) PTEN and TRP53 independently suppress Nanog expression in spermatogonial stem cells. Stem Cells Dev 19:979–988

    Article  CAS  PubMed  Google Scholar 

  53. Brandner S (2010) Nanog, Gli, and p53: a new network of stemness in development and cancer. EMBO J 29:2475–2476

    Article  CAS  PubMed  Google Scholar 

  54. Moon J-H, Kwon S, Jun EK, Kim A, Whang KY, Kim H, Oh S, Yoon BS, You S (2011) Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochem Biophys Res Commun 412:175–181

    CAS  PubMed  Google Scholar 

  55. Gantmacher F (1959) Applications of the theory of matrices. Interscience, New York

    Google Scholar 

  56. Clarke BL (1980) Stability of complex reaction networks. Adv Chem Phys 43:1–213

    CAS  Google Scholar 

  57. Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32:321–335

    Article  CAS  PubMed  Google Scholar 

  58. Aguda BD, Algar CK (2003) A structural analysis of the qualitative networks regulating the cell cycle and apoptosis. Cell Cycle 2:538–544

    Article  CAS  PubMed  Google Scholar 

  59. Aguda BD, Goryachev AB (2007) From pathways databases to network models of switching behavior. PLoS Comput Biol 3:1674–1678

    CAS  PubMed  Google Scholar 

  60. Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10:476–482

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baltazar D. Aguda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aguda, B.D. (2013). Modeling microRNA-Transcription Factor Networks in Cancer. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_9

Download citation

Publish with us

Policies and ethics