Skip to main content

Abstract

The “geomicrobiology” of evaporites—microorganisms and associated biomaterials preserved in saline minerals—has seen great progress over the past decade. There are many new reports of culturing archaea and bacteria (Stan-Lotter et al. 1999, 2002; Vreeland et al. 2000, 2007; Mormile et al. 2003; Gruber et al. 2004; Schubert et al. 2009b, 2010a; Gramain et al. 2011), sequencing prokaryote DNA (Radax et al. 2001; Fish et al. 2002; Park et al. 2009; Panieri et al. 2010; Gramain et al. 2011), and identifying organic compounds such as beta carotene and cellulose (Griffith et al. 2008; Schubert et al. 2010b; Lowenstein et al. 2011) from ancient samples of halite (NaCl) and gypsum (CaSO4 · 2H2O). Tiny droplets of brine trapped within evaporite minerals, called fluid or brine inclusions, seem to be an important, but not exclusive, haven for microbes and biomaterials in buried evaporites. Given the expanded interest in microbial life in evaporites, and the potential implications regarding the search for life in the solar system, it seemed worthwhile to summarize the most important findings in the geomicrobiology of evaporites. The last such summary of advances in the geomicrobiology of ancient evaporites was by Vreeland and Powers (1999), so the focus here is on the last 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamski JC, Roberts JA, Goldstein RH (2006) Entrapment of bacteria in fluid inclusions in laboratory-grown halite. Astrobiology 6:552–562

    Article  CAS  Google Scholar 

  • Attia OE, Lowenstein TK, Wali AMA (1995) Middle Miocene gypsum, Gulf of Suez: marine or nonmarine? J Sed Res A 65:614–626

    Google Scholar 

  • Benison KC, Goldstein RH (1999) Permian paleoclimate data from fluid inclusions in halite. Chem Geol 154:113–132

    Article  CAS  Google Scholar 

  • Benison KC, Jagniecki EA, Edwards TB, Mormile MR, Storrie-Lombardi MC (2008) “Hairy Blobs”: Microbial suspects preserved in modern and ancient extremely acid lake evaporites. Astrobiology 8:807–821

    Article  CAS  Google Scholar 

  • Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476

    Article  CAS  Google Scholar 

  • Burruss RC (2003) Chapter 11. Raman spectroscopy of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: analysis and interpretation. Mineral Assoc Canada, Short Course 32:279–289

    Google Scholar 

  • Casas E, Lowenstein TK (1989) Diagenesis of saline pan halite: Comparison of petrographic features of modern, Quaternary and Permian halites. J Sedim Petrol 59:724–739

    CAS  Google Scholar 

  • DeGelder J, DeGussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38(9):1133–1147

    Article  CAS  Google Scholar 

  • Eugster HP, Hardie LA (1978) Saline Lakes. In: Lerman A (ed) Lakes chemistry, geology, physics. Springer, New York, p 237–293

    Google Scholar 

  • Fendrihan S, Stan-Lotter H (2004) Survival of halobacteria in fluid inclusions as a model of possible biotic survival in Martian halite. In: Teodorescu H, Griebel H (ed) Mars and planetary science and technology. Performantica, Iasi, p 9–18

    Google Scholar 

  • Fendrihan S, Legat A, Pfaffenhuemer M, Gruber C, Weidler G, Gerbl F, Stan-Lotter H (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Biotechnol 5:203–218

    Article  CAS  Google Scholar 

  • Fendrihan S, Musso M, Stan-Lotter H (2009) Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J Raman Spectrosc 40(12):1996–2003

    Article  CAS  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Article  CAS  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals, Society for Sedimentary Geology (SEPM) Short Course 31. Tulsa, Oklahoma, p 199

    Google Scholar 

  • Gramain A, Chong Diaz G, Demergasso C, Lowenstein TK, McGenity TJ (2011) Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ Microbiol 13:2105–2121

    Article  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  CAS  Google Scholar 

  • Griffith JD, Willcox S, Powers DW, Nelson R, Baxter BK (2008) Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. Astrobiology 8:215–228

    Article  CAS  Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H-J, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431–439

    Google Scholar 

  • Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Mineral Soc Am Spec Paper 3:273–290

    Google Scholar 

  • Hardie LA, Lowenstein TK, Spencer RJ (1985) The problem of distinguishing between primary and secondary features in evaporites. Sixth International Symposium on Salt 1:11–39

    Google Scholar 

  • Heraud P, Beardall J, McNaughton D, Wood BR (2007) In vivo prediction of the nutrient status of individual micoalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30

    Article  CAS  Google Scholar 

  • Horita J, Zimmermann H, Holland HD (2002) The chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim Cosmochim Acta 66:3733–3756

    Article  CAS  Google Scholar 

  • Jones BF, Deocampo DM (2004) Geochemistry of saline lakes. Treatise on Geochemistry 5:393–424

    CAS  Google Scholar 

  • Kjelleberg S, Humphrey BA, Marshall KC (1983) Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol 46:978–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalevych VM, Peryt TM, Petrichenko OI (1998) Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. J Geol 106:695–712

    Article  Google Scholar 

  • Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–644

    Article  CAS  Google Scholar 

  • Lowenstein TK, Spencer RJ (1990) Syndepositional origin of potash evaporites: petrographic and fluid inclusion evidence. Am Jour Sci 290:1–42

    Article  CAS  Google Scholar 

  • Lowenstein TK, Li J, Brown CB (1998) Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chem Geol 150:223–245

    Article  CAS  Google Scholar 

  • Lowenstein TK, Li J, Brown C, Roberts SM, Ku T-L, Luo S, Yang W (1999) 200 k.y. paleoclimate record from Death Valley salt core. Geology 27:3–6

    Article  Google Scholar 

  • Lowenstein TK, Brennan ST (2001) Fluid inclusions in paleolimnological studies of chemical sediments. In: Last WM, Smol JP (ed) Tracking environmental change using lake sediments: physical and geochemical methods, vol 2. Kluwer Academic, Dordrecht, p 189–216

    Google Scholar 

  • Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions in salt deposits. Science 294:1086–1088

    Article  CAS  Google Scholar 

  • Lowenstein TK, Timofeeff MN, Kovalevych VM, Horita J (2005) The major-ion composition of Permian seawater. Geochim Cosmochim Acta 69:1701–1719

    Article  CAS  Google Scholar 

  • Lowenstein TK, Schubert BA, Timofeeff MN (2011) Microbial communities in fluid inclusions and long-term survival in halite. GSA TODAY 21(1):4–9

    Article  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  CAS  Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv Microb Ecol 6:171–198

    Article  Google Scholar 

  • Morita RY (1997) Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman and Hall, New York, p 529

    Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102

    Article  Google Scholar 

  • Mudalige A, Pemberton JE (2007) Raman spectroscopy of glycerol/D2O solutions. Vib Spectrosc 45:27–35

    Article  CAS  Google Scholar 

  • Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol 32:617–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panieri G, Lugli S, Manzi V, Palinska KA, Roveri M (2008) Microbial communities in Messinian evaporite deposits of the Vena de Gesso (northern Apennines, Italy). Stratigraphy 5:343–352

    Google Scholar 

  • Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, Palinska KA (2010) Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8:101–111

    Article  CAS  Google Scholar 

  • Park JS, Vreeland RH, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD (2009) Haloarchaeal diversity at 23, 121, and 419 MYA salts. Geobiology 7:515–523

    Article  CAS  Google Scholar 

  • Petrichenko OI, Peryt TM, Poberegsky AV (1997) Peculiarities of gypsum sedimentation in the Middle Miocene Badenian evaporite basin of Carpathian Foredeep. Slovak Geol Mag 3:91–104

    CAS  Google Scholar 

  • Petry R, Schmitt M, Popp J (2003) Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 4(1):14–30

    Article  CAS  Google Scholar 

  • Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5:221–228

    Article  CAS  Google Scholar 

  • Roberts SM, Spencer RJ (1995) Paleotemperatures preserved in fluid inclusions in halite. Geochim Cosmochim Acta 59:3929–3942

    Article  CAS  Google Scholar 

  • Roedder E (1984) The fluids in salt. Am Mineral 69:413–439

    CAS  Google Scholar 

  • Rosenzweig WD, Peterson J, Woish J, Vreeland RH (2000) Development of a protocol to retrieve microorganisms from ancient salt crystals. Geomicrobiol J 17:185–192

    Article  Google Scholar 

  • Sabouraud-Rosset C (1969) Characteres morphologiques des cavites primaires des monocristaux, sur l’example du gypse de synthese. Academie des Sciences (Paris). Comptes Rendus 268(Serie D):749–751

    Google Scholar 

  • Sabouraud-Rosset C (1972) Microcryoscopie des inclusions liquides du gypse et salinite des milieux generateurs. Rev Geogr Phys Geol Dyn 14:133–144

    CAS  Google Scholar 

  • Sabouraud-Rosset C (1974) Determination par activation neutronique des rapports Cl/Br des inclusions fluides de divers gypses. Correlation avec les donnees de la microcryoscopie et interpretations genetiques. Sedimentology 21:415–431

    Article  CAS  Google Scholar 

  • Sabouraud-Rosset C (1976) Les conditions de genese de certaines formes de cavites intracristallines eclairees par la methode experimentale. Bull Soc France Mineral Cristallogr 99:74–77

    Google Scholar 

  • Sankaranarayanan K, Timofeeff MN, Spathis R, Lowenstein TK, Lum JK (2011) Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction. PLoS ONE 6(6):e20683. doi:10.1371/journal.pone.0020683

    Article  CAS  Google Scholar 

  • Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD, Powers DW (2005a) New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33:265–268

    Article  CAS  Google Scholar 

  • Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD (2005b) Paleobrine temperatures, chemistries, and paleoenvironments of Silurian Salina Formation F-1 Salt, Michigan Basin, U.S.A., from petrography and fluid Inclusions in halite. J Sediment Res 75:534–544

    Article  CAS  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009a) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482

    Article  CAS  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2009b) How do prokaryotes survive in fluid inclusions in halite for 30,000 years? Geology 37:1059–1062

    Article  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010a) Halophilic Archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12(2):440–454

    Article  CAS  Google Scholar 

  • Schubert BA, Timofeeff MN, Polle JE, Lowenstein TK (2010b) Dunaliella cells in fluid inclusions in halite: significance for long-term survival of prokaryotes. Geomicrobio J 27:61–75

    Article  CAS  Google Scholar 

  • Smoot JP, Lowenstein TK (1991) Depositional environments of non-marine evaporites. In Melvin JL (ed) Evaporites, petroleum and mineral Resources. Developments in sedimentology 50. Elsevier, Amsterdam, p 189–347

    Chapter  Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574

    Article  CAS  Google Scholar 

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814

    CAS  PubMed  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeocl Palaeoecol 144:3–19

    Article  Google Scholar 

  • Timofeeff MN, Lowenstein TK, Silva MAM, Harris NB (2006) Secular variations in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites. Geochim Cosmochim Acta 70:1977–1994

    Article  CAS  Google Scholar 

  • Vreeland RH, Powers DW (1999) Considerations for microbiological sampling of crystals from ancient salt formations. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC, Boca Raton, FL, p 53–73

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  CAS  Google Scholar 

  • Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeff M, Satterfield C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live Cretaceous (121-112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiol J 24:275–282

    Article  CAS  Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim K. Lowenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lowenstein, T.K. (2012). Microorganisms in Evaporites: Review of Modern Geomicrobiology. In: Vreeland, R.H. (eds) Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5539-0_5

Download citation

Publish with us

Policies and ethics