Skip to main content

A Color and Texture Based Hierarchical K-NN Approach to the Classification of Non-melanoma Skin Lesions

  • Chapter
Color Medical Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 6))

Abstract

This chapter proposes a novel hierarchical classification system based on the K-Nearest Neighbors (K-NN) model and its application to non-melanoma skin lesion classification. Color and texture features are extracted from skin lesion images. The hierarchical structure decomposes the classification task into a set of simpler problems, one at each node of the classification. Feature selection is embedded in the hierarchical framework that chooses the most relevant feature subsets at each node of the hierarchy. The accuracy of the proposed hierarchical scheme is higher than 93 % in discriminating cancer and potential at risk lesions from benign lesions, and it reaches an overall classification accuracy of 74 % over five common classes of skin lesions, including two non-melanoma cancer types. This is the most extensive known result on non-melanoma skin cancer classification using color and texture information from images acquired by a standard camera (non-dermoscopy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcón JF, Heinrich A, Uzunbajakava N, Krekels G, Siem D, de Haan G, de Haan G (2009) Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Sel Top Signal Process 3:14–25

    Article  Google Scholar 

  2. Aldridge RB, Glodzik D, Ballerini L, Fisher RB, Rees JL (2011) The utility of non-rule-based visual matching as a strategy to allow novices to achieve skin lesion diagnosis. Acta Derm-Venereol 91:279–283

    Article  Google Scholar 

  3. Aldridge RB, Li X, Ballerini L, Fisher RB, Rees JL (2010) Teaching dermatology using 3-dimensional virtual reality. Archives of Dermatology 149(10)

    Google Scholar 

  4. Aldridge RB, Zanotto M, Ballerini L, Fisher RB, Rees JL (2011) Novice identification of melanoma: not quite as straightforward as the ABCDs. Acta Derm-Venereol 91:125–130

    Google Scholar 

  5. Armengol E (2011) Classification of melanomas in situ using knowledge discovery with explained case-based reasoning. Artif Intell Med 51:93–105

    Article  Google Scholar 

  6. Arvis V, Debain C, Berducat M, Benassi A (2004) Generalization of the cooccurence matrix for colour images: application to colour texture classification. Image Anal Stereol 23(1):63–72

    Article  Google Scholar 

  7. Aslandogan Y, Mahajani G (2004) Evidence combination in medical data mining. In: Proceedings of international conference on information technology: coding and computing, vol 2, pp 465–469

    Chapter  Google Scholar 

  8. Ballerini L, Li X, Fisher RB, Aldridge B, Rees J (2010) Content-based image retrieval of skin lesions by evolutionary feature synthesis. In: di Chio C, et al. (eds) Application of evolutionary computation, Istanbul, Turkey. Lectures notes in computer science, vol 6024, pp 312–319

    Chapter  Google Scholar 

  9. Ballerini L, Li X, Fisher RB, Rees J (2010) A query-by-example content-based image retrieval system of non-melanoma skin lesions. In: Caputo B (ed) Proceedings MICCAI-09 workshop MCBR-CDS 2009: medical content-based retrieval for clinical decision support. LNCS, vol 5853. Springer, Berlin, pp 31–38

    Chapter  Google Scholar 

  10. Basarab T, Munn S, Jones RR (1996) Diagnostic accuracy and appropriateness of general practitioner referrals to a dermatology out-patient clinic. Br J Dermatol 135(1):70–73

    Article  Google Scholar 

  11. Cascinelli N, Ferrario M, Tonelli T, Leo E (1987) A possible new tool for clinical diagnosis of melanoma: the computer. J Am Acad Dermatol 16(2):361–367

    Article  Google Scholar 

  12. Cavalcanti PG, Scharcanski J (2011) Automated prescreening of pigmented skin lesions using standard cameras. Comput Med Imaging Graph 35(6):481–491

    Article  Google Scholar 

  13. Ceci M, Malerba D (2003) Hierarchical classification of HTML documents with WebClassII. In: Proceedings of the 25th European conference on information retrieval, pp 57–72

    Google Scholar 

  14. Celebi ME, Iyatomi H, Schaefer G, Stoecker WV (2009) Lesion border detection in dermoscopy images. Comput Med Imaging Graph 33(2):148–153

    Article  Google Scholar 

  15. Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH (2007) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373

    Article  Google Scholar 

  16. Celebi ME, Stoecker WV, Moss RH (2011) Advances in skin cancer image analysis. Comput Med Imaging Graph 35(2):83–84

    Article  Google Scholar 

  17. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  MATH  Google Scholar 

  18. Cancer research UK (CRUK). CancerStats, Internet (2011). URL http://info.cancerresearchuk.org/cancerstats. Accessed 03/08/2011

  19. Dalal A, Moss RH, Stanley RJ, Stoecker WV, Gupta K, Calcara DA, Xu J, Shrestha B, Drugge R, Malters JM, Perry LA (2011) Concentric decile segmentation of white and hypopigmented areas in dermoscopy images of skin lesions allows discrimination of malignant melanoma. Comput Med Imaging Graph 35(2):148–154

    Article  Google Scholar 

  20. D’Alessio S, Murray K, Schiaffino R, Kershenbaum A (2000) The effect of using hierarchical classifiers in text categorization. In: Proceedings of 6th international conference recherche d’information assistee par ordinateur, pp 302–313

    Google Scholar 

  21. Day GR, Barbour RH (2000) Automated melanoma diagnosis: where are we at? Skin Res Technol 6:1–5

    Article  Google Scholar 

  22. Dimitrovski I, Kocev D, Loskovska S, Dzeroski S (2011) Hierarchical annotation of medical images. Pattern Recognit 44(10–11):2436–2449

    Article  Google Scholar 

  23. Dumais S, Chen H (2000) Hierarchical classification of web content. In: Proceedings of the 23rd annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, pp 256–263

    Google Scholar 

  24. Duwairi R, Al-Zubaidi R (2011) A hierarchical K-NN classifier for textual data. Int Arab J Inf Technol 8(3):251–259

    Google Scholar 

  25. Fix E, Hodges JL (1989) Discriminatory analysis. Nonparametric discrimination: consistency properties. Int Stat Rev 57(3):238–247

    Article  MATH  Google Scholar 

  26. Garnavi R, Aldeen M, Celebi ME, Varigos G, Finch S (2011) Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput Med Imaging Graph 35(2):105–115

    Article  Google Scholar 

  27. Gerbert B, Maurer T, Berger T, Pantilat S, McPhee SJ, Wolff M, Bronstone A, Caspers N (1996) Primary care physicians as gatekeepers in managed care: primary care physicians’ and dermatologists’ skills at secondary prevention of skin cancer. Arch Dermatol 132(9):1030–1038

    Article  Google Scholar 

  28. Gordon AD (1987) A review of hierarchical classification. J R Stat Soc A 150(2):119–137

    Article  MATH  Google Scholar 

  29. Green A, Martin N, McKenzie G, Pfitzner J, Quintarelli F, Thomas BW, O’Rourke M, Knight N (1991) Computer image analysis of pigmented skin lesions. Melanoma Res 1:231–236

    Article  Google Scholar 

  30. Haralick RM, Shanmungam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  31. Hintz-madsen M, Hansen LK, Larsen J, Olesen E, Drzewiecki KT (1995) Design and evaluation of neural classifiers application to skin lesion classification. In: Proceedings of the 1995 IEEE workshop on neural networks for signal processing V, pp 484–493

    Chapter  Google Scholar 

  32. Iyatomi H, Celebi ME, Schaefer G, Tanaka M (2011) Automated color calibration method for dermoscopy images. Comput Med Imaging Graph 35(2):89–98

    Article  Google Scholar 

  33. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  34. Jain AK, Zongker D (1997) Feature-selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153–158

    Article  Google Scholar 

  35. Ko CB, Walton S, Keczkes K, Bury HPR, Nicholson C (1994) The emerging epidemic of skin cancer. Br J Dermatol 130:269–272

    Article  Google Scholar 

  36. Laskaris N, Ballerini L, Fisher RB, Aldridge B, Rees J (2010) Fuzzy description of skin lesions. In: Manning DJ, Abbey CK (eds) Medical imaging 2010: image perception, observer performance, and technology assessment. Proceedings of the SPIE, vol 7627, pp 762,717-1–762,717-10

    Google Scholar 

  37. Lee TK, Claridge E (2005) Predictive power of irregular border shapes for malignant melanomas. Skin Res Technol 11(1):1–8

    Article  Google Scholar 

  38. Lehmann TM, Palm C (2001) Color line search for illuminant estimation in real-world scenes. J Opt Soc Am A 18(11):2679–2691

    Article  Google Scholar 

  39. Li X, Aldridge B, Ballerini L, Fisher R, Rees J (2009) Depth data improves skin lesion segmentation. In: Proceedings of the 12th international conference on medical image computing and computer assisted intervention (MICCAI), London, pp 1100–1107

    Google Scholar 

  40. Maglogiannis I, Doukas CN (2009) Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans Inf Technol Biomed 13(5):721–733

    Article  Google Scholar 

  41. Maglogiannis I, Pavlopoulos S, Koutsouris D (2005) An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. IEEE Trans Inf Technol Biomed 9(1):86–98

    Article  Google Scholar 

  42. Martínez-Otzeta JM, Sierra B, Lazkano E, Astigarraga A (2006) Classifier hierarchy learning by means of genetic algorithms. Pattern Recognit Lett 27(16):1998–2004

    Article  Google Scholar 

  43. Mete M, Kockara S, Aydin K (2011) Fast density-based lesion detection in dermoscopy images. Comput Med Imaging Graph 35(2):128–136

    Article  Google Scholar 

  44. Morrison A, O’Loughlin S, Powell FC (2001) Suspected skin malignancy: a comparison of diagnoses of family practitioners and dermatologists in 493 patients. Int J Dermatol 40(2):104–107

    Article  Google Scholar 

  45. Murtagh F (1983) A survey of recent advances in hierarchical clustering algorithms. Comput J 26(4):354–359

    MATH  Google Scholar 

  46. Ohta YI, Kanade T, Sakai T (1980) Color information for region segmentation. Comput Graph Image Process 13(1):222–241

    Article  Google Scholar 

  47. Pourghassem H, Ghassemian H (2008) Content-based medical image classification using a new hierarchical merging scheme. Comput Med Imaging Graph 32(8):651–661

    Article  Google Scholar 

  48. Rahman MM, Desai BC, Bhattacharya P (2006) Image retrieval-based decision support system for dermatoscopic images. In: IEEE symposium on computer-based medical systems. IEEE Computer Society, Los Alamitos, pp 285–290

    Chapter  Google Scholar 

  49. Rigel DS, Russak J, Friedman R (2010) The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA: Cancer J Clinicians 60(5):301–316

    Article  Google Scholar 

  50. Rodriguez C, Boto F, Soraluze I, Pérez A (2002) An incremental and hierarchical K-NN classifier for handwritten characters. In: Proceedings of the 16th international conference on pattern recognition (ICPR’02), vol 3. IEEE Computer Society, Washington, pp 98–101

    Google Scholar 

  51. Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H (2003) Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Arch Dermatol 139(3):361–367

    Article  Google Scholar 

  52. Sadeghi M, Razmara M, Lee TK, Atkins M (2011) A novel method for detection of pigment network in dermoscopic images using graphs. Comput Med Imaging Graph 35(2):137–143

    Article  Google Scholar 

  53. Salah B, Alshraideh M, Beidas R, Hayajneh F (2011) Skin cancer recognition by using a neuro-fuzzy system. Cancer Inform 10:1–11

    Google Scholar 

  54. Schaefer G, Rajab MI, Celebi ME, Iyatomi H (2011) Colour and contrast enhancement for improved skin lesion segmentation. Comput Med Imaging Graph 35(2):99–104

    Article  Google Scholar 

  55. Schmid-Saugeons P, Guillod J, Thiran JP (2003) Towards a computer-aided diagnosis system for pigmented skin lesions. Comput Med Imaging Graph 27:65–78

    Article  Google Scholar 

  56. Seidenari S, Pellacani G, Pepe P (1998) Digital videomicroscopy improves diagnostic accuracy for melanoma. J Am Acad Dermatol 39(2):175–181

    Article  Google Scholar 

  57. Stoecker WV, Wronkiewiecz M, Chowdhury R, Stanley RJ, Xu J, Bangert A, Shrestha B, Calcara DA, Rabinovitz HS, Oliviero M, Ahmed F, Perry LA, Drugge R (2011) Detection of granularity in dermoscopy images of malignant melanoma using color and texture features. Comput Med Imaging Graph 35(2):144–147

    Article  Google Scholar 

  58. Sun A, Lim EP, Ng WK (2003) Performance measurement framework for hierarchical text classification. J Am Soc Inf Sci Technol 54:1014–1028

    Article  Google Scholar 

  59. Tommasi T, Dedelaers T (2010) In: The medical image classification task. ImageCLEF: the information retrieval series, vol 32, pp 221–238

    Google Scholar 

  60. Viola KV, Tolpinrud WL, Gross CP, Kirsner RS, Imaeda S, Federman DG (2011) Outcomes of referral to dermatology for suspicious lesions: implications for teledermatology. Arch Dermatol 147(5):556–560

    Article  Google Scholar 

  61. Wang H, Moss RH, Chen X, Stanley RJ, Stoecker WV, Celebi ME, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW, Szalapski TM (2011) Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images. Comput Med Imaging Graph 35(2):116–120

    Article  Google Scholar 

  62. Wettschereck D, Aha DW, Mohri T (1997) A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif Intell Rev 11:273–314

    Article  Google Scholar 

  63. Wollina U, Burroni M, Torricelli R, Gilardi S, Dell’Eva G, Helm C, Bardey W (2007) Digital dermoscopy in clinical practise: a three-centre analysis. Skin Res Technol 13:133–142

    Article  Google Scholar 

  64. Zanotto M (2010) Visual description of skin lesions. Master’s thesis, School of Informatics, University of Edinburgh

    Google Scholar 

  65. Zanotto M, Ballerini L, Aldridge B, Fisher RB, Rees J (2011) Visual cues do not improve skin lesion ABC(D) grading. In: Manning DJ, Abbey CK (eds) Medical imaging 2011: image perception, observer performance, and technology assessment. Proceedings of the SPIE, vol 7966, pp 79,660U-1–79,660U-10

    Google Scholar 

  66. Zhou H, Schaefer G, Celebi ME, Lin F, Liu T (2011) Gradient vector flow with mean shift for skin lesion segmentation. Comput Med Imaging Graph 35(2):121–127

    Article  Google Scholar 

Download references

Acknowledgement

We thank the Wellcome Trust for funding this project (Grant No: 083928/Z/07/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Ballerini .

Editor information

Editors and Affiliations

Appendix

Appendix

List of texture features selected for each level of the final tree. (See Table 8.)

Table 8 Legend: R = Red, G = Green, B = Blue, H = Hue, S = Saturation, V = Value, L, a, b = Lab color space. Texture features are defined in [30]

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ballerini, L., Fisher, R.B., Aldridge, B., Rees, J. (2013). A Color and Texture Based Hierarchical K-NN Approach to the Classification of Non-melanoma Skin Lesions. In: Celebi, M., Schaefer, G. (eds) Color Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5389-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5389-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5388-4

  • Online ISBN: 978-94-007-5389-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics