Skip to main content

Nitrous Oxide Sources and Mitigation Strategies

  • Chapter
  • First Online:
Soil Emission of Nitrous Oxide and its Mitigation

Abstract

Industrial and biological fixation of N2 has outpaced denitrification; as a result, N has become a major pollutant. Nitrogen fertilization is a substantial source of nitrogen-containing trace gases that have both regional and global consequences. Achieving synchrony between N supply and crop demand without excess or deficiency is the key to optimizing trade-offs amongst yield, profit, and environmental protection in both large-scale systems in developed countries and small-scale systems in developing countries. Improving the efficiency of N use by crops plants is crucial for meeting this challenge. Practices for better synchronization of N supply with plant needs include use of soil tests, better timing, and placement of fertilizers, cover crops during fallow periods, use of slow release and controlled release fertilizers and nitrification inhibitors. Use of available technology and best management practices could reduce N2O emission by 30–40%. Mitigation of N2O through improved N management has additional economic benefits of decreasing fertilizer needs and minimizing production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Nr:

Reactive nitrogen

SOC:

Soil organic carbon

SOM:

Soil organic matter

GHG:

Greenhouse gas

CFC:

Chloroflorocarbon

INM:

Integrated nutrients management

TRF:

Tropical rain forest

NUE:

Nitrogen use efficiency

RMP:

Recommended management practice

BMP:

Best management practices

CT:

Conventional tillage

NT:

No tillage

WFPS:

Water-filled pore spaces

GM:

Genetic modification

GE:

Genetic engineered crops

References

  • Agriculture and Aagri-Food Canada (AAFC) (2010) Environmental Sustainability of Canadian Agriculture. Agriculture and Agri-Food Canada.http://www.agr.gc.ca/env/naharp-pnarsa/index_e.php

  • Alexander, M. (1961) Introduction to soil microbiology. Wiley, New York

    Google Scholar 

  • Amos, B., Arkebauer, T.J., Doran, J.W. (2005) Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Sci. Soc. Amer. J.69(2), 387–395

    CAS  Google Scholar 

  • Askegaard, M., Olesen, J.E., Kristensen, K. (2005) Nitrate leaching from organic arable crop rotations: effects of location, manure and catch crop. Soil Use Manage.21(2), 181–188. doi:10.1111/j.1475-2743.2005.tb00123.x

    Google Scholar 

  • Baggs, E.M., Stevenson, M., Pihlatie, M., Regar, A., Cook, H., Cadisch, G. (2003) Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant Soil254(2), 361–370. doi:10.1023/a:1025593121839

    CAS  Google Scholar 

  • Ball, B.C., Scott, A., Parker, J.P. (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Till. Res.53(1), 29–39. doi:10.1016/s0167-1987(99)00074-4

    Google Scholar 

  • Balmford, A., Green, R.E., Scharlemann, J.P.W. (2005) Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Global Change Biol.11(10), 1594–1605. doi:10.1111/j.1365-2486.2005.001035.x

    Google Scholar 

  • Barthes, B., Azontonde, A., Blanchart, E., Girardin, C., Villenave, C., Lesaint, S., Oliver, R., Feller, C. (2004) Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use Manage.20, 231–239. doi:10.1079/sum2004235

    Google Scholar 

  • Beatty, P.H., Shrawat, A.K., Carroll, R.T., Zhu, T., Good, A.G. (2009) Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. Plant Biotechnol. J.7(6), 562–576. doi:10.1111/j.1467-7652.2009.00424.x

    CAS  Google Scholar 

  • Bleken, M.A., Bakken, L.R. (1997) The nitrogen cost of food production: Norwegian society. Ambio26(3), 134–142

    Google Scholar 

  • Board on Agriculture and Natural Resources (BANR) (2010) The impact of Genetically Engineered crops on farm sustainability in the United States., Board on Agriculture and Natural Resources (BANR), Committee on the Impact of Biotechnology on Farm Level Economics and Sustainability, Division on Earth and Life studies. National Academies Press, Wachington, D.C. 250 pp

    Google Scholar 

  • Borlaug, N.E., Dowswell, C. (2008) The second green revolution. Taeb, M., Zakri, A.H. (eds.). Agriculture, Human Security, and Peace: A Crossroad in African Development

    Google Scholar 

  • Bouwman, A., Boumans, L.J.M., Batjes, N.H. (2001) Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. International Fertilizer Industry Association (IFA) & Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

    Google Scholar 

  • Bouwman, A.F., Boumans, L.J.M., Batjes, N.H. (2002) Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem. Cycles16(4), 1058. doi:10.1029/2001gb001811

    Google Scholar 

  • Bouwman, A.F., Vanderhoek, K.W., Olivier, J.G.J. (1995) Uncertainties in the global source distribution of nitrous oxide. J. Geophys. Res-Atmos.100(D2), 2785–2800. doi:10.1029/94jd02946

    CAS  Google Scholar 

  • Bronson, K.F., Mosier, A.R., Bishnoi, S.R. (1992) Nitrous oxide emissions in irrigated corn as affected by nitrification inhibitors. Soil Sci. Soc. Amer. J.56(1), 161–165

    CAS  Google Scholar 

  • Bruulsema, T.W., Chen, F., Garcia, F., Ivanova, S., Li, S., Rao, N., Witt, C. (2008) A global framework for best management practices for fertilizer use. International Plant Nutrition Institute

    Google Scholar 

  • Burger, M., Jackson, L.E., Lundquist, E.J., Louie, D.T., Miller, R.L., Rolston, D.E., Scow, K.M. (2005) Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes. Biol. Fert. Soils42(2), 109–118. doi:10.1007/s00374-005-0007-z

    CAS  Google Scholar 

  • Burney, J.A., Davis, S.J., Lobell, D.B. (2010) Greenhouse gas mitigation by agricultural intensification. Proc. Nat. Acad. Sci. USA107(26), 12052-12057. doi:10.1073/pnas.0914216107

    CAS  Google Scholar 

  • Cassman, K.G., Dobermann, A., Walters, D.T. (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio31(2), 132–140. doi:10.1579/0044-7447-31.2.132

    Google Scholar 

  • Cassman, K.G., Dobermann, A., Walters, D.T., Yang, H. (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Env. Resour.28, 315–358. doi:10.1146/annurev.energy.28.040202.122858

    Google Scholar 

  • CAST (2004) Climate change and greenhouse gas mitigation: challenges and opportunities for agriculture. Council for Agricultural Science and Technology (CAST), Ames, IA

    Google Scholar 

  • Chen, X.-P., Cui, Z.-L., Vitousek, P.M., Cassman, K.G., Matson, P.A., Bai, J.-S., Meng, Q.-F., Hou, P., Yue, S.-C., Roemheld, V., Zhang, F.-S. (2011) Integrated soil-crop system management for food security. Proc. Nat. Acad. Sci. USA108(16), 6399–6404. doi:10.1073/pnas.1101419108

    CAS  Google Scholar 

  • Cole, V., Cerri, C., Minami, K., Mosier, A., Rosenberg, N., Sauerbeck, D. (1996) Agricultural aptions for mitigation of greenhouse gas emission. In: Watson, R.T., Zinyowera, M.C., Moss, R.H., Dokken, D.J. (eds.) Climate Change 1995. Impacts, adaptations and mitigation of climate change: Scientific technical analyses. Contribution of working group II to the second assessment report of the Intergovernmental Panel on Climate Change. pp. 745–771. Cambridge University Press, New York

    Google Scholar 

  • Cotton, F.A., Wilkenson, G. (1998) Advanced Inorganic Chemistry. Wiley, New York

    Google Scholar 

  • Crews, T.E., Peoples, M.B. (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr. Cycl. Agroecosys.72(2), 101–120. doi:10.1007/s10705-004-6480-1

    CAS  Google Scholar 

  • Crutzen, P.J. (1970) Influence of nitrogen oxides on atmospheric ozone content. Q. J. Roy. Meteor. Soc.96(408), 320–325. doi:10.1002/qj.49709640815

    Google Scholar 

  • Crutzen, P.J., Mosier, A.R., Smith, K.A., Winiwarter, W. (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys.8(2), 389–395

    CAS  Google Scholar 

  • Davidson, E.A. (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience2(9), 659–662. doi:10.1038/ngeo608

    CAS  Google Scholar 

  • Del Grosso, S.J., Mosier, A.R., Parton, W.J., Ojima, D.S. (2005) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Till. Res.83(1), 9–24. doi:10.1016/j.still.2005.02.007

    Google Scholar 

  • Del Grosso, S.J., Parton, W.J., Mosier, A.R., Walsh, M.K., Ojima, D.S., Thornton, P.E. (2006) DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. J. Environ. Qual.35(4), 1451–1460. doi:10.2134/jeq2005.0160

    Google Scholar 

  • Delgado, J.A., Dillon, M.A., Sparks, R.T., Essah, S.Y.C. (2007) A decade of advances in cover crops. J. Soil Water Conserv.62(5), 110A–117A

    Google Scholar 

  • Dobermann, A. (2007) Nutrient use efficiency – measurement and management. In: Krauss, A., Isherwood, K., Heffer, P. (eds.) Fertilizer best management practices: General principels, strategies for adoption and voluntary initiatives vs regulations. Papers presented at the IFA International Workshop, 7-9 March 2007. Brussels, Belgium. pp. 1–28. International Fertilizers Industry Association (IFA), Paris, France

    Google Scholar 

  • Dobermann, A., Cassman, K.G. (2004) Environmental dimensions of fertilizer N: what can be done to increase nitrogen use efficiency and ensure global food security? In: Mosier, A.R., Syers, J.K., Freeney, J.R. (eds.) Agriculture and the nitrogen cycle: Assessing the impact of fertilizer use on food production and the environment. SCOPE 65. pp. 261–278. Island Press, Washington

    Google Scholar 

  • Drury, C.F., Reynolds, W.D., Tan, C.S., Welacky, T.W., Calder, W., McLaughlin, N.B. (2006) Emissions of nitrous oxide and carbon dioxide: Influence of tillage type and nitrogen placement depth. Soil Sci. Soc. Amer. J.70(2), 570–581. doi:10.2136/sssaj2005.0042

    CAS  Google Scholar 

  • Drury, C.F., Yang, X.M., Reynolds, W.D., McLaughlin, N.B. (2008) Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat. Can. J. Soil Sci.88(2), 163–174

    CAS  Google Scholar 

  • Duke, C. (2006) The potential for agricultural greenhouse gas emission reductions in the temperate region of Canada through nutrient management planning. BIOCAP, Canada

    Google Scholar 

  • Duvick, D.N. (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron.86, 83–145. doi:10.1016/s0065-2113(05)86002-x

    Google Scholar 

  • Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., Wang, M. (2001) Atmospheric Chemistry and Greenhouse Gases. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J.v.d., Dai, X., Maskell, K., Johnson, C.A. (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, vol.. p. 881. Cambridge University Press, Cambridge, United Kingdom and New York, USA

    Google Scholar 

  • Eichner, M.J. (1990) Nitrous oxide emissions from fertilized soils: summary of available data. J. Environ. Qual.19(2), 272–280

    Google Scholar 

  • Elder, J.W., Lal, R. (2008) Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Till. Res.98(1), 45–55. doi:10.1016/j.still.2007.10.003

    Google Scholar 

  • Environment Canada (2007) Greenhouse Gas Sources and Sinks in Canada, 1990–2005 National inventory report. Environment Canada, Greenhouse Gas Division.http://www.ec.gc.ca/Publications/E80FB0A6-A0C2-4E6E-A12E-005D50D041C5%5CNationalInventoryReport19902005April2007-.pdf

  • Eriksson, H. (1991) Sources and sinks of carbon dioxide in Sweden. Ambio20(3-4), 146–150

    Google Scholar 

  • Food and Agriculture Organization of the United nations (FAO) (2006) World agriculture: Towards 2030/2050 - Prospects for food, nutrition, agriculture and major commodity groups. Food and Agriculture Organization of the United Nations.http://www.fao.org/docrep/009/a0607e/a0607e00.htm

  • FAOSTAT (2011) FAOSTAT fertilizers database. Food and Agriculture Organization of the United Nations.http://faostat.fao.org. Accessed November 2011

  • Feyereisen, G.W., Wilson, B.N., Sands, G.R., Strock, J.S., Porter, P.M. (2006) Potential for a rye cover crop to reduce nitrate loss in southwestern Minnesota. Agron. J.98(6), 1416–1426. doi:10.2134/agronj2005.0134

    CAS  Google Scholar 

  • Fowles, M. (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioen.31(6), 426–432. doi:10.1016/j.biombioe.2007.01.012

    CAS  Google Scholar 

  • Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J. (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma122(1), 1–23. doi:10.1016/j.geoderma.2004.01.021

    CAS  Google Scholar 

  • Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J. (2003) The nitrogen cascade. Bioscience53(4), 341–356. doi:10.1641/0006-3568(2003)053[0341:tnc]2.0.co;2

    Google Scholar 

  • Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R., Vorosmarty, C.J. (2004) Nitrogen cycles: Past, present, and future. Biogeochemistry70(2), 153–226. doi:10.1007/s10533-004-0370-0

    CAS  Google Scholar 

  • Galloway, J.N., Schlesinger, W.H., Levy, H., Michaels, A., Schnoor, J.L. (1995) Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochem. Cycles9(2), 235–252. doi:10.1029/95gb00158

    CAS  Google Scholar 

  • Gehl, R.J., Schmidt, J.P., Maddux, L.D., Gordon, W.B. (2005) Corn yield response to nitrogen rate and timing in sandy irrigated soils. Agron. J.97(4), 1230–1238. doi:10.2134/agronj2004.0303

    Google Scholar 

  • Granli, T., Bockman, O.C. (1994) Nitrous oxide from agriculture. Norw. J. Agric. Sci. Suppl.12, 1–128

    Google Scholar 

  • Groffman, P.M. (1985) Nitrification and denitrification in conventional and no-tillage soils. Soil Sci. Soc. Amer. J.49(2), 329–334

    CAS  Google Scholar 

  • Groffman, P.M., Gold, A.J., Addy, K. (2000) Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere2(3-4), 291–299

    CAS  Google Scholar 

  • Groffman, P.M., Gold, A.J., Kellogg, D.Q., Addy, K. (2002) Nitrous oxide emissions derived from N leaching. In: Petersen, S.O., Olesen, J.E. (eds.) DIAS Report, Plant Production no 81, October 2002. Greenhouse Gas Inventories for Agriculture in the Nordic Countries. pp. 143–155. Danish Ministry of Food, Agriculture and Fisheries

    Google Scholar 

  • Gurian-Sherman, D. (2009) Failure to yield. In: Union of Concerned Scientists. p. 51 pp. Cambridge, MA

    Google Scholar 

  • Hao, X., Chang, C., Carefoot, J.M., Janzen, H.H., Ellert, B.H. (2001) Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. Nutr. Cycl. Agroecosys.60(1-3), 1–8. doi:10.1023/a:1012603732435

    CAS  Google Scholar 

  • Hoben, J.P., Gehl, R.J., Millar, N., Grace, P.R., Robertson, G.P. (2011) Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biol.17(2), 1140–1152. doi:10.1111/j.1365-2486.2010.02349.x

    Google Scholar 

  • Hultgreen, G.E., Leduc, P. (2003) The effects of nitrogen fertilizer placement, formulation, timing and rate on greenhouse gas emission and agronomic performance. Saskatchewan Department of Agriculture and Food

    Google Scholar 

  • International Fertilizer Industry Association (IFA) (2007) Sustainable management of the nitrogen cycle in agriculture and mitigation of reactive nitrogen side effects. International Fertilizer Industry Association, (IFA)

    Google Scholar 

  • International Fertilizer industry Association/Food and Agriculture Organization of the United nations (IFA/FAO) (2001) Global estimates of gaseous emissions of NH3, NO, and N2O from agricultural land. International Fertilizer Industry Association and Food and Agriculture Organization of the United Nations.ftp://ftp.fao.org/agl/agll/docs/globest.pdfIFA/FAO

  • Intergovernmental Panel on Climate Change (IPCC) (2006) N2O emission from managed soils and CO2 emissions from lime and urea application Published. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (eds.) Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Volume 4 Agriculture, forestry and other land uses.. IGES, Japan

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., K.B. Averyt, Tignor, M., Miller, H.L. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Jayasundara, S., Wagner-Riddle, C., Parkin, G., von Bertoldi, P., Warland, J., Kay, B., Voroney, P. (2007) Minimizing nitrogen losses from a corn-soybean-winter wheat rotation with best management practices. Nutr. Cycl. Agroecosys.79(2), 141–159. doi:10.1007/s10705-007-9103-9

    Google Scholar 

  • Jaynes, D.B., Karlen, D.L. (2008) Sustaining soil resources while managing nutrients. In: Upper Mississippi River sub-basin hypoxia nutrient committee. Final Report: Gulf Hypoxia and Local Water Quality Concerns Workshop. pp. 149–158. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan

    Google Scholar 

  • Justes, E., Mary, B., Nicolardot, B. (1999) Comparing the effectiveness of radish cover crop, oilseed rape volunteers and oilseed rape residues incorporation for reducing nitrate leaching. Nutr. Cycl. Agroecosys.55(3), 207–220. doi:10.1023/a:1009870401779

    CAS  Google Scholar 

  • Kallenbach, C.M., Rolston, D.E., Horwath, W.R. (2010) Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agric. Ecosys. Environ.137(3-4), 251–260. doi:10.1016/j.agee.2010.02.010

    CAS  Google Scholar 

  • Kasimir-Klemedtsson, Å., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., Oenema, O. (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manage.13, 245–250. doi:10.1111/j.1475-2743.1997.tb00595.x

    Google Scholar 

  • Keller, M., Varner, R., Dias, J.D., Silva, H., Crill, P., de Oliveira, R.C., Jr. (2005) Soil-atmosphere exchange of nitrous oxide, nitric oxide, methane, and carbon dioxide in logged and undisturbed forest in the Tapajos National Forest, Brazil. Earth Interactions9 Issue 23, 1–28

    Google Scholar 

  • Kroeze, C., Mosier, A. (2000) New estimates for emissions of nitrous oxide. In: vanHam, J.E.A., Baede, A.P.M., Meyer, L.A., Ybema, R. (eds.) Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation. pp. 45–64

    Google Scholar 

  • Kroeze, C., Mosier, A., Bouwman, L. (1999) Closing the global N2O budget: A retrospective analysis 1500-1994. Global Biogeochem. Cycles13(1), 1–8. doi:10.1029/1998gb900020

    CAS  Google Scholar 

  • Laegried, M., Aastveit, A.H. (2002) Nitrous oxide emissions from field-applied fertilizers. In: Petersen, S.O., Olesen, J.E. (eds.) DIAS Report, Plant Production no. 81, October 2002. Greenhouse Gas Inventories for Agriculture in the Nordic Countries. pp. 122–134. Danish Ministry of Food, Agriculture and Fisheries

    Google Scholar 

  • Lee, J., Six, J., King, A.P., Van Kessel, C., Rolston, D.E. (2006) Tillage and field scale controls on greenhouse gas emissions. J. Environ. Qual.35(3), 714–725. doi:10.2134/jeq2005.0337

    CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., Rondon, M. (2006) Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitig. Adapt. Strateg. Glob. Change11(2), 395-419. doi:10.1007/s11027-005-9006-5

    Google Scholar 

  • Lemke, R.L., Izaurralde, R.C., Nyborg, M., Solberg, E.D. (1999) Tillage and N source influence soil-emitted nitrous oxide in the Alberta Parkland region. Can. J. Soil Sci.79(1), 15–24. doi:10.4141/S98-013

    CAS  Google Scholar 

  • Li, C.S., Frolking, S., Butterbach-Bahl, K. (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change72(3), 321–338. doi:10.1007/s10584-005-6791-5

    CAS  Google Scholar 

  • Liu, X.J., Mosier, A.R., Halvorson, A.D., Zhang, F.S. (2006) The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil280(1-2), 177–188. doi:10.1007/s11104-005-2950-8

    CAS  Google Scholar 

  • Lobell, D.B. (2007) The cost of uncertainty for nitrogen fertilizer management: A sensitivity analysis. Field Crop Res.100(2-3), 210–217. doi:10.1016/j.fcr.2006.07.007

    Google Scholar 

  • Luo, J., de Klein, C.A.M., Ledgard, S.F., Saggar, S. (2010) Management options to reduce nitrous oxide emissions from intensively grazed pastures: A review. Agric. Ecosys. Environ.136(3-4), 282–291. doi:10.1016/j.agee.2009.12.003

    CAS  Google Scholar 

  • Ma, B.L., Wu, T.Y., Tremblay, N., Deen, W., Morrison, M.J., McLaughlin, N.B., Gregorich, E.G., Stewart, G. (2010) Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer. Global Change Biol.16(1), 156–170. doi:10.1111/j.1365-2486.2009.01932.x

    Google Scholar 

  • Malhi, S.S., Lemke, R., Mooleki, S.P., Schoenau, J.J., Brandt, S., Lafond, G., Wang, H., Hultgreen, G.E., May, W.E. (2008) Fertilizer N management and P placement effects on yield, seed protein content and N uptake of flax under varied conditions in Saskatchewan. Can. J. Plant Sci.88(1), 11–33

    CAS  Google Scholar 

  • Malhi, S.S., Lemke, R., Wang, Z.H., Chhabra, B.S. (2006) Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Till. Res.90(1-2), 171–183. doi:10.1016/j.still.2005.09.001

    Google Scholar 

  • Malhi, S.S., Oliver, E., Mayerle, G., Kruger, G., Gill, K.S. (2003) Improving effectiveness of seedrow-placed urea with urease inhibitor and polymer coating for durum wheat and canola. Comm. Soil Sci. Plant Anal.34(11-12), 1709–1727. doi:10.1081/css-120021307

    CAS  Google Scholar 

  • Maljanen, M., Liikanen, A., Silvola, J., Martikainen, P.J. (2003) Nitrous oxide emissions from boreal organic soil under different land-use. Soil Biol. Biochem.35(5), 689–700. doi:10.1016/s0038-0717(03)5-3

    CAS  Google Scholar 

  • Martinelli, L.A., Almeida, S., Brown, I.F., Moreira, M.Z., Victoria, R.L., Filoso, S., Ferreira, C.A.C., Thomas, W.W. (2000) Variation in nutrient distribution and potential nutrient losses by selective logging in a humid tropical forest of Rondonia, Brazil. Biotropica32(4), 597–613. doi:10.1646/0006-3606(2000)032[0597:vindap]2.0.co;2

    Google Scholar 

  • Matson, P.A., Naylor, R., Ortiz-Monasterio, I. (1998) Integration of environmental, agronomic, and economic aspects of fertilizer management. Science280(5360), 112–115. doi:10.1126/science.280.5360.112

    CAS  Google Scholar 

  • Matson, P.A., Parton, W.J., Power, A.G., Swift, M.J. (1997) Agricultural intensification and ecosystem properties. Science277(5325), 504–509. doi:10.1126/science.277.5325.504

    CAS  Google Scholar 

  • Matson, P.A., Vitousek, P.M. (1990) Ecosystem approach to a global nitrous oxide budget. Bioscience40(9), 667–671. doi:10.2307/1311434

    Google Scholar 

  • McSwiney, C.P., Robertson, G.P. (2005) Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biol.11(10), 1712–1719. doi:10.1111/j.1365-2486.2005.01040.x

    Google Scholar 

  • Monteny, G.J., Bannink, A., Chadwick, D. (2006) Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosys. Environ.112(2-3), 163–170. doi:10.1016/j.agee.2005.08.015

    CAS  Google Scholar 

  • Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., van Cleemput, O. (1998a) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosys.52(2-3), 225–248. doi:10.1023/a:1009740530221

    CAS  Google Scholar 

  • Mosier, A.R. (2002) Environmental challenges associated with needed increases in global nitrogen fixation. Nutr. Cycl. Agroecosys.63(2), 101–116. doi:10.1023/a:1021101423341

    CAS  Google Scholar 

  • Mosier, A.R., Bleken, M.A., Chaiwanakupt, P., Ellis, E.C., Freney, J.R., Howarth, R.B., Matson, P.A., Minami, K., Naylor, R., Weeks, K.N., Zhu, Z.L. (2001) Policy implications of human-accelerated nitrogen cycling. Biogeochemistry52(3), 281–320. doi:10.1023/a:1006430122495

    CAS  Google Scholar 

  • Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K. (1996) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil181(1), 95–108. doi:10.1007/bf00011296

    CAS  Google Scholar 

  • Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K. (1998b) Assessing and mitigating N2O emissions from agricultural soils. Climatic Change40(1), 7–38. doi:10.1023/a:1005386614431

    CAS  Google Scholar 

  • Mosquera, J., Hol, J.M.G., Rappoldt, C., Dolfing, J. (2007) Precise soil management as a tool to reduce CH4 and N2O emissions from agricultural soils. Report 28

    Google Scholar 

  • Neill, C., Steudler, P.A., Garcia-Montiel, D.C., Melillo, J.M., Feigl, B.J., Piccolo, M.C., Cerri, C.C. (2005) Rates and controls of nitrous oxide and nitric oxide emissions following conversion of forest to pasture in Rondonia. Nutr. Cycl. Agroecosys.71(1), 1–15. doi:10.1007/s10705-004-0378-9

    CAS  Google Scholar 

  • Nevison, C. (2000) Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff. Chemosphere2(3-4), 493–500

    CAS  Google Scholar 

  • Nevison, C.D., Mahowald, N.M., Weiss, R.F., Prinn, R.G. (2007) Interannual and seasonal variability in atmospheric N2O. Global Biogeochem. Cycles21(3). doi:10.1029/2006gb002755

  • Oenema, O., Tamminga, S. (2005) Nitrogen in global animal production and management options for improving nitrogen use efficiency. Science China C48, 871–887. doi:10.1360/062005-279

    Google Scholar 

  • Oenema, O., Wrage, N., Velthof, G.L., van Groenigen, J.W., Dolfing, J., Kuikman, P.J. (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr. Cycl. Agroecosys.72(1), 51–65. doi:10.1007/s10705-004-7354-2

    CAS  Google Scholar 

  • Ogle, S.M., Breidt, F.J., Paustian, K. (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry72(1), 87–121. doi:10.1007/s10533-004-0360-2

    Google Scholar 

  • Olsthoorn, C.S.M., Fong, N.P.K. (1998) The anthropogenic nitrogen cycle in the Netherlands. Nutr. Cycl. Agroecosys.52(2), 269–276

    Google Scholar 

  • Paoletti, M.G., Gomiero, T., Pimentel, D. (2011) Introduction to the Special Issue: Towards a more sustainable agriculture. Crit. Rev. Plant Sci.30(1-2), 2–5. doi:10.1080/07352689.2011.553148

    Google Scholar 

  • Parkin, T.B., Hatfield, J.L. (2010) Influence of nitrapyrin on N2O losses from soil receiving fall-applied anhydrous ammonia. Agric. Ecosys. Environ.136(1-2), 81–86. doi:10.1016/j.agee.2009.11.014

    CAS  Google Scholar 

  • Parkin, T.B., Kaspar, T.C. (2006) Nitrous oxide emissions from corn-soybean systems in the Midwest. J. Environ. Qual.35(4), 1496–1506. doi:10.2134/jeq2005.0183

    CAS  Google Scholar 

  • Pattey, E., Edwards, G.C., Desjardins, R.L., Pennock, D.J., Smith, W., Grant, B., MacPherson, J.I. (2007) Tools for quantifying N2O emissions from agroecosystems. Agric. Forest Meteor.142(2-4), 103–119. doi:10.1016/j.agrformet.2006.05.013

    Google Scholar 

  • Peoples, M.B., Mosier, A.R., Freney, J.R. (1994) Minimizing gaseous loss of nitrogen. In: Bacon, P.E. (ed.) Nitrogen Fertilization in the Environment. pp. 565–602. Marcel Dekker Inc, New York

    Google Scholar 

  • Prinn, R.G., Zander, R. (1999) Long-lived ozone related compounds. In: Albritton, D.L., Aucamp, P.J., Mégie, G., Watson, R.T. (eds.) Scientific assessment of ozone depletion: 1998, Global Ozone Research and Monitoring Project - Report No. 44. pp. 1.1–54. World Meteorological Organization, Geneva, Switzerland

    Google Scholar 

  • Reay, D.S., Smith, K.A., Edwards, A.C. (2003) Nitrous oxide emission from agricultural drainage waters. Global Change Biol.9(2), 195–203. doi:10.1046/j.1365-2486.2003.00584.x

    Google Scholar 

  • Rees, W.E. (2003) A blot on the land. Nature421(6926), 898–898. doi:10.1038/421898a

    CAS  Google Scholar 

  • Roberts, T.L. (2007) Right product, right rate, right time, and right place…The foundation of best management practices for fertilizer. In: Fertilizer best management practices: General principles, strategy for their adaptation and voluntary initiatives vs regulations: Proceedings of International Fertilizer Industry Association (IFA) Workshop, March 7-9, 2007, Brussels, Belgium. pp. 29–32. IFA, Paris, France

    Google Scholar 

  • Robertson, G.P., Groffman, P.M. (2007) Nitrogen transformations. In: Paul, E.A. (ed.) Soil microbiology, ecology and biochemistry. pp. 341–364. Elsevier, New York

    Google Scholar 

  • Robertson, G.P., Vitousek, P.M. (2009) Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Env. Resour.34, 97–125

    Google Scholar 

  • Rochette, P. (2008) No-till only increases N2O emissions in poorly-aerated soils. Soil Till. Res.101(1-2), 97–100. doi:10.1016/j.still.2008.07.011

    Google Scholar 

  • Rochette, P., Chantigny, M.H., Angers, D.A., Bertrand, N., Cote, D. (2001) Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues. Can. J. Soil Sci.81(3), 515–523

    CAS  Google Scholar 

  • Rochette, P., Tremblay, N., Fallon, E., Angers, D.A., Chantigny, M.H., MacDonald, J.D., Bertrand, N., Parent, L.E. (2010) N2O emissions from an irrigated and non-irrigated organic soil in eastern Canada as influenced by N fertilizer addition. Eur. J. Soil Sci.61(2), 186–196. doi:10.1111/j.1365-2389.2009.01222.x

    CAS  Google Scholar 

  • Rochette, P., Worth, D.E., Lemke, R.L., McConkey, B.G., Pennock, D.J., Wagner-Riddle, C., Desjardins, R.L. (2008) Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Can. J. Soil Sci.88(5), 641–654

    CAS  Google Scholar 

  • Saggar, S. (2010) Estimation of nitrous oxide emission from ecosystems and its mitigation technologies. Agric. Ecosys. Environ.136(3-4), 189–191. doi:10.1016/j.agee.2010.01.007

    CAS  Google Scholar 

  • Sato, K., Aoki, M., Noyori, R. (1998) A "green" route to adipic acid: Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science281(5383), 1646–1647. doi:10.1126/science.281.5383.1646

    CAS  Google Scholar 

  • Scheer, C., Wassmann, R., Kienzler, K., Ibragimov, N., Lamers, J.P.A., Martius, C. (2008a) Methane and nitrous oxide fluxes in annual and perennial land-use systems of the irrigated areas in the Aral Sea Basin. Global Change Biol.14(10), 2454–2468. doi:10.1111/j.1365-2486.2008.01631.x

    Google Scholar 

  • Scheer, C., Wassmann, R., Klenzler, K., Lbragimov, N., Eschanov, R. (2008b) Nitrous oxide emissions from fertilized irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: Influence of nitrogen applications and irrigation practices. Soil Biol. Biochem.40(2), 290–301. doi:10.1016/j.soilbio.2007.08.007

    CAS  Google Scholar 

  • Shipley, P.R., Meisinger, J.J., Decker, A.M. (1992) Conserving residual corn fertilizer nitrogen with winter cover crops. Agron. J.84(5), 869–876

    CAS  Google Scholar 

  • Singh, B.P., Hatton, B.J., Singh, B., Cowie, A.L., Kathuria, A. (2010) Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual.39(4), 1224–1235. doi:10.2134/jeq2009.0138

    CAS  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S.M., Sa, J.C.D., Albrecht, A. (2002) Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie22(7-8), 755–775. doi:10.1051/agro:2002043

    Google Scholar 

  • Six, J., Ogle, S.M., Breidt, F.J., Conant, R.T., Mosier, A.R., Paustian, K. (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biol.10(2), 155–160. doi:10.1111/j.1529-8817.2003.00730.x

    Google Scholar 

  • Smil, V. (1999) Nitrogen in crop production: An account of global flows. Global Biogeochem. Cycles13(2), 647–662. doi:10.1029/1999gb900015

    CAS  Google Scholar 

  • Smith, K.A., Conen, F. (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage.20, 255–263. doi:10.1079/sum2004238

    Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J. (2008) Greenhouse gas mitigation in agriculture. Pholos. T. Roy. Soc. B.363(1492), 789–813. doi:10.1098/rstb.2007.2184

    CAS  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O. (2007) Agriculture. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds.) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 487–540. Cambridge University Press Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Snyder, C.S., Bruulsema, T.W. (2007) Nutrient Use Efficiency and Effectiveness in North America: Indices of Agronomic and Environmental Benefit International Plant Nutrition Institute.http://www.ipni.net/ipniweb/portal.nsf/0/D58A3C2DECA9D7378525731E006066D5

  • Snyder, C.S., Bruulsema, T.W., Jensen, T.L., Fixen, P.E. (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosys. Environ.133(3-4), 247–266. doi:10.1016/j.agee.2009.04.021

    CAS  Google Scholar 

  • Spokas, K.A., Baker, J.M., Reicosky, D.C. (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil333(1-2), 443–452. doi:10.1007/s11104-010-0359-5

    CAS  Google Scholar 

  • Stehfest, E., Bouwman, L. (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosys.74(3), 207–228. doi:10.1007/s10705-006-9000-7

    CAS  Google Scholar 

  • Strock, J.S., Porter, P.M., Russelle, M.P. (2004) Cover cropping to reduce nitrate loss through subsurface drainage in the northern US Corn Belt. J. Environ. Qual.33(3), 1010-1016

    CAS  Google Scholar 

  • Tenuta, M., Beauchamp, E.G. (2003) Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam. Can. J. Soil Sci.83(5), 521–532

    CAS  Google Scholar 

  • Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., Swackhamer, D. (2001) Forecasting agriculturally driven global environmental change. Science292(5515), 281–284. doi:10.1126/science.1057544

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (US EPA) (2011) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009. United States Environmental Protection Agency (US EPA)

    Google Scholar 

  • Ussiri, D.A.N., Lal, R., Jarecki, M.K. (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Till. Res.104(2), 247–255. doi:10.1016/j.still.2009.03.001

    Google Scholar 

  • Van Groenigen, J.W., Velthof, G.L., Oenema, O., Van Groenigen, K.J., Van Kessel, C. (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci.61(6), 903–913. doi:10.1111/j.1365-2389.2009.01217.x

    Google Scholar 

  • Velthof, G.L., Kuikman, P.J., Oenema, O. (2003) Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fert. Soils37(4), 221–230. doi:10.1007/s00374-003-0589-2

    CAS  Google Scholar 

  • Venterea, R.T., Burger, M., Spokas, K.A. (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J. Environ. Qual.34(5), 1467–1477. doi:10.2134/jeq2005.0018

    CAS  Google Scholar 

  • Venterea, R.T., Rolston, D.E. (2002) Nitrogen oxide trace gas transport and transformation: II. Model simulations compared with data. Soil. Sci.167(1), 49–61. doi:10.1097/00010694-200201000-00005

    CAS  Google Scholar 

  • Venterea, R.T., Stanenas, A.J. (2008) Profile analysis and Modeling of reduced tillage effects on soil nitrous oxide flux. J. Environ. Qual.37(4), 1360–1367. doi:10.2134/jeq2007.0283

    CAS  Google Scholar 

  • Vitousek, P.M., Aber, J., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, G.D. (1997) Human alteration of the global nitrogen cycle: Causes and consequences. Issues in Ecology1, 1–15

    Google Scholar 

  • Vitousek, P.M., Farrington, H. (1997) Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry37(1), 63–75. doi:10.1023/a:1005757218475

    CAS  Google Scholar 

  • von Arnold, K., Nilsson, M., Hanell, B., Weslien, P., Klemedtsson, L. (2005a) Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biol. Biochem.37(6), 1059–1071. doi:10.1016/j.soilbio.2004.11.004

    Google Scholar 

  • von Arnold, K., Weslien, P., Nilsson, M., Svensson, B.H., Klemedtsson, L. (2005b) Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils. For. Ecol. Manage.210(1-3), 239–254. doi:10.1016/j.foreco.2005.02.031

    Google Scholar 

  • Wagner-Riddle, C., Thurtell, G.W. (1998) Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management practices. Nutr. Cycl. Agroecosys.52(2-3), 151–163. doi:10.1023/a:1009788411566

    CAS  Google Scholar 

  • World Meteorological Organization (WMO) (2011) The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2010. World Meteorological Organization Greenhouse Gases Bulletin No. 7. World Meteorological Organization.http://www.wmo.int/gaw

  • Woods, S., Henao, J., Rosegrant, M. (2004) The role of nitrogen in sustaining food production and estimating future nitrogen fertilizer needs to meet food demand. In: Mosier, A.R., Syers, J.K., Freney, J.R. (eds.) Scope 65: Agriculture and the nitrogen cycle: Assessing the impacts of fertilizer use on food production and the environment. pp. 245–260. Island Press, Washington, DC, USA

    Google Scholar 

  • Yanai, Y., Toyota, K., Okazaki, M. (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr.53(2), 181–188. doi:10.1111/j.1747-0765.2007.00123.x

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ussiri, D., Lal, R. (2013). Nitrous Oxide Sources and Mitigation Strategies. In: Soil Emission of Nitrous Oxide and its Mitigation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5364-8_8

Download citation

Publish with us

Policies and ethics