Skip to main content

Computational Modelling of Flow and Scalar Transport Accounting for Near-Wall Turbulence with Relevance to Gas Turbine Combustors

  • Chapter
  • First Online:
Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

Abstract

An overview is given of the activities in the framework of the German Collaborative Research Center “Flow and Combustion in Future Gas Turbine Combustion Chambers” (Sonderforschungsbereich SFB 568) concerning the development of computational models in the framework of the conventional RANS method with special focus on the near-wall turbulence and a method combining a near-wall RANS models in the wall vicinity with the conventional LES in the core flow and their applications to the flow separating from sharp-edged and continuous surfaces and different swirl combustor configurations under the conditions of constant and variable fluid properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Project-Related Publications

  1. Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 539, 139–166 (2002)

    Google Scholar 

  2. Jakirlić, S., Jester-Zürker, R., Tropea, C.: Joint effects of geometry confinement and swirling inflow on turbulent mixing in model combustors: a second-moment closure study. J. Prog. CFD 4(3–5), 198–207 (2004)

    Google Scholar 

  3. Jakirlić, S., Eisfeld, B., Jester-Zürker, R., Kroll, N.: Near-wall, Reynolds-stress model calculations of transonic flow configurations relevant to aircraft aerodynamics. Int. J. Heat Fluid Flow 28(4), 602–615 (2007)

    Article  Google Scholar 

  4. Jakirlić, S., Kniesner, B., Kadavelil, G., Gnirß, M., Tropea, C.: Experimental and computational investigations of flow and mixing in a single-annular combustor configuration. Flow Turbul. Combust. 83(3), 425–448 (2009)

    Article  MATH  Google Scholar 

  5. Jakirlić, S., Kadavelil, G., Kornhaas, M., Schäfer, M., Sternel, D.C., Tropea, C.: Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int. J. Heat Fluid Flow 31(5), 820–832 (2010)

    Article  Google Scholar 

  6. Jakirlić, S., Jovanović, J.: On unified boundary conditions for improved prediction of near-wall turbulence. J. Fluid Mech. 656, 530–539 (2010)

    Article  MATH  Google Scholar 

  7. Jakirlić, S., Kniesner, B.: Near-wall RANS modelling in LES of heat transfer in backward-facing step flows under conditions of constant and variable fluid properties. In: ASME 3rd Joint U.S.-European Fluids Engineering Summer Meeting: Symposium on “DNS, LES and Hybrid RANS/LES Methods”, Montreal, Quebec, Canada, Paper No. FEDSM-ICNMM2010-30354, 1–5 August 2010

    Google Scholar 

  8. Jakirlić, S., Jester-Zürker, R.: Convective heat transfer in wall-bounded flows affected by severe fluid properties variation: a second-moment closure study. In: ASME 3rd Joint U.S.-European Fluids Engineering Summer Meeting: “7th Symposium on Fundamental Issues and Perspectives in Fluid Mechanics”, Montreal, Quebec, Canada, Paper No. FEDSM-ICNMM2010-30729, 1–5 August 2010

    Google Scholar 

  9. Jakirlić, S., Chang, C.-Y., Kadavelil, G., Kniesner, B., Maduta, R., Sarić, S., Basara, B.: Critical evaluation of some popular hybrid LES/RANS methods by reference to flow separation at a curved wall (invited lecture). In: 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, Paper No. AIAA-2011-3473, 27–30 June 2011

    Google Scholar 

  10. Jakirlić, S., Kniesner, B., Kadavelil, G.: On interface issues in LES/RANS coupling strategies: a method for turbulence forcing. JSME J. Fluid Sci. Technol. 6(1), 56–72 (2011)

    Article  Google Scholar 

  11. Jester-Zürker, R., Jakirlić, S., Tropea, C.: Computational modelling of turbulent mixing in confined swirling environment under constant and variable density conditions. Flow Turbul. Combust. 75(1–4), 217–244 (2005)

    Article  MATH  Google Scholar 

  12. Jester-Zürker, R.: Reynolds-Spannungsmodellierung des Skalartransports unter Bedingungen variabler Stoffeigenschaften in Drallbrennerkonfigurationen (Second-Moment Closure modelling of scalar transport in swirl combustors under variable flow property conditions). PhD thesis, Technische Universität Darmstadt. Shaker Verlag, Aachen. ISBN 978-3-8322-6742-1 (2006)

    Google Scholar 

  13. John-Puthenveettil, G., Jia, L., Reimann, T., Jakirlić, S., Sternel, D.C.: Thermal mixing of flow-crossing streams in a T-shaped junction: a comparative LES, RANS and Hybrid LES/RANS study. In: 7th International Symposium on Turbulence, Heat and Mass Transfer, Palermo, Italy, 24–27 September 2012

    Google Scholar 

  14. John-Puthenveettil, G.: Computational modelling of complex flows using eddy-resolving models accounting for near-wall turbulence. PhD thesis, Technische Universität Darmstadt (2012)

    Google Scholar 

  15. Kniesner, B.: Ein hybrides LES/RANS Verfahren für konjugierte Strömung, Wärme- und Stoffübertragung mit Relevanz zu Drallbrennerkonfigurationen (A hybrid LES/RANS method for conjugated flow, heat and mass transfer with relevance to swirl combustor configurations). PhD thesis, Technische Universität Darmstadt, Darmstadt. http://tuprints.ulb.tu-darmstadt.de/950/ (2008)

  16. Šarić, S., Jakirlić, S., Čavar, D., Kniesner, B., Altenhöfer, P., Tropea, C.: Computational study of mean flow and turbulence structure in inflow system of a swirl combustor. In: Tropea, C., et al. (eds.) Notes on numerical fluid mechanics and multidisciplinary design, vol. 96, pp. 462–470. Springer, Berlin/New York (2007). ISBN 978-3-540-74458-0

    Google Scholar 

Other Publications

  1. Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ = 1020 with Pr = 0.025 and 0.71. Int. J. Heat Fluid Flow 25, 404–419 (2004)

    Article  Google Scholar 

  2. Avancha, R.V.R., Pletcher, R.H.: Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. Int. J. Heat Fluid Flow 23, 601–614 (2002)

    Article  Google Scholar 

  3. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills – numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)

    Article  MATH  Google Scholar 

  4. Cherry, E.M., Elkins, C.J., Eaton, J.K.: Geometric sensitivity of three-dimensional separated flows. Int. J. Heat Fluid Flow 29, 803–811 (2008)

    Article  Google Scholar 

  5. Cherry, E.M., Elkins, C.J., Eaton, J.K.: Pressure measurements in a three-dimensional separated diffuser. Int. J. Heat Fluid Flow 30, 1–2 (2009)

    Article  Google Scholar 

  6. Chien, K.-Y.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 20(1), 33–38 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davidson, L., Dahlström, S.: Hybrid LES/RANS: computation of the flow around a three-dimensional hill. In: 6th International Symposium on Engineering Turbulence Modelling and Measurements, Sardinia, Italy, 23–25 May 2005

    Google Scholar 

  8. FASTEST-Manual.: Institute of Numerical Methods in Mechanical Engineering, Department of Mechanical Engineering, Technische Universität Darmstadt, Germany (2005)

    Google Scholar 

  9. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gnirß, M., Tropea, C.: Simultaneous PIV and concentration measurements in a gas-turbine combustor model. Exp. Fluids 45(4), 643–656 (2008)

    Article  Google Scholar 

  11. Greenblatt, D., Paschal, K.B., Yao, C.S., Harris, J., Schaeffler, N.W., Washburn, A.E.: A separation control CFD validation test case, Part1: baseline and steady suction, In: AIAA Paper No. 2004–2220 (2004)

    Google Scholar 

  12. Hanjalić, K., Popovac, M., Hadziabdić, M.: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25, 1047–1051 (2004)

    Article  Google Scholar 

  13. Hirota, M., Mohri, E., Asano, H., Goto, H.: Experimental study on turbulent mixing process in cross-flow type T-junction. Int. J. Heat Fluid Flow 31(5), 776–784 (2010)

    Article  Google Scholar 

  14. Hoyas, S., Jimenez, J.: Scaling of the velocity fluctuations in turbulent channels up to Re τ  = 2003. Phys. Fluids 18, 011702 (2006)

    Article  Google Scholar 

  15. Kader, B.A.: Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transf. 24, 1541–1544 (1981)

    Article  Google Scholar 

  16. Kasagi, N., Matsunaga, A.: Three-dimensional particle-tracking velocimetry measurements of turbulence statistics and energy budget in a backward facing step flow. Int. J. Heat Fluid Flow 16, 477–485 (1995)

    Article  Google Scholar 

  17. Kasagi, N., Iida, O.: Progress in direct numerical simulation of turbulent heat transfer. In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, CA, 15–19 March 1999

    Google Scholar 

  18. Klein, M., Janicka, J., Sadiki, A.: A digital filter based generation of inflow data for spatially developing direct numerical or large-eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  19. Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–138 (1974)

    Article  Google Scholar 

  20. Mason, P.J., Callen, N.S.: On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulation of turbulent channel flow. J. Fluid Mech. 162, 439–462 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modelling in large-eddy simulations. Phys. Fluids 12(7), 1629–1632 (2000)

    Article  Google Scholar 

  22. Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.R.: The inner-outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24(4), 538–550 (2003)

    Article  Google Scholar 

  23. Pope, S.: Turbulent flows. Cambridge University Press, Cambridge (2000). ISBN 0-521-59886-9

    Book  MATH  Google Scholar 

  24. Popovac, M., Hanjalic, K.: Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turbul. Combust. 78, 177–202 (2007)

    Article  MATH  Google Scholar 

  25. Rapp, Ch.: Experimentelle Untersuchung der turbulenten Strömung über periodische Hügel. PhD thesis, Technical University Munich, Germany (2008)

    Google Scholar 

  26. Rapp, C., Manhart, M.: Flow over periodic hills: an experimental study. Exp. Fluids 51, 247–269 (2011)

    Article  Google Scholar 

  27. Satake, S., Kunugi, T., Shehata, A.M., McEligot, D.M.: Direct numerical simulation for laminarization of turbulent forced gas flows in circular tubes with strong heating. Int. J. Heat Fluid Flow 21, 526–534 (2000)

    Article  Google Scholar 

  28. Shehata, A.M., McEligot, D.M.: Mean structure in the viscous layer of strongly-heated internal gas flows. Measurements. Int. J. Heat Mass Transf. 41, 4297–4313 (1998)

    Article  Google Scholar 

  29. Temmerman, L., Hadžiabdić, M., Leschziner, M.A., Hanjalić, K.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26, 173–190 (2005)

    Article  Google Scholar 

  30. Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backwards-facing step. ASME J. Heat Transf. 107, 922–929 (1985)

    Article  Google Scholar 

  31. Wang, W.-P., Pletcher, R.: On the large eddy simulation of a turbulent channel flow with significant heat transfer. Phys. Fluids 8(12), 3354–3366 (1996)

    Article  MATH  Google Scholar 

  32. Yoshizawa, A., Horiuti, K.: A statistically-derived subgridscale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54, 2834–2839 (1985)

    Article  Google Scholar 

  33. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)

    Article  Google Scholar 

  34. Durst, F., Schäfer, M.: A parallel block-structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22, 549–565 (1996)

    Article  MATH  Google Scholar 

  35. Gibson, M.M., Launder, B.E.: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, 491–511 (1978)

    Article  MATH  Google Scholar 

  36. Lai, Y.G., So, R.M.C.: Near-wall modelling of turbulent heat fluxes. Int. J. Heat Mass Trans. 33(7), 1429–1440 (1990)

    Article  Google Scholar 

  37. Jones, W.P.: Turbulence modelling for combustion flows. In: Modelling for Combustion and Turbulence. Lecture series 1992–03. von Karman Institute for Fluid Dynamics, Rhode Saint Geneèse (1992)

    Google Scholar 

  38. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  39. Seki, Y., Kawamoto, N., Kawamura, H.: Proposal of turbulent heat flux model and its application to turbulent channel flow with various thermal boundary conditions. In: Hanjalic et al. (eds.) Turbulence, Heat and Mass Transfer 4, pp. 569-576. Begell House Inc., New York (2003)

    Google Scholar 

  40. Sternel, D.C., Junglas, D., Martin, A., Schäfer, M.: Optimisation of partitioning for parallel flow simulation on block structural grids. In: Topping, B.H.V., Mota Soares, C.A. (eds.) Proceedings of the 4th International Conference on Engineering Computational Technology. Stirling, paper 93. Civil-Comp Press, Stirling (2004)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the German Research Council (DFG) through the SFB568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jakirlić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jakirlić, S., Jester-Zürker, R., John-Puthenveettil, G., Kniesner, B., Tropea, C. (2013). Computational Modelling of Flow and Scalar Transport Accounting for Near-Wall Turbulence with Relevance to Gas Turbine Combustors. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics