Skip to main content

Evolutionary Engineering for Industrial Microbiology

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

The authors Niti Vanee and Adam B. Fisher are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

array-based discovery of adaptive mutations

CO:

cellular objectives

EMS:

ethyl methane sulfonate

EO:

engineering objectives

EvoEng:

evolutionary engineering

MAGE:

multiplex automated genome engineering

NTG:

nitroso-methyl guanidine

Oligo(s):

oligonucleotide(s)

RNAseq:

RNA sequencing

SELEX:

selectable evolution of ligands by exponential enrichment

SS:

solution space

StEP:

staggered extension process

TRMR:

trackable multiplex recombineering

References

  • Albert TJ, Dailidiene D, Dailide G, Norton JE, Kalia A, Richmond TA, Molla M, Singh J, Green RD, Berg DE (2005) Mutation discovery in bacterial genomes: metronidazole resistance in helicobacter pylori. Nat Method 2:951–953

    CAS  Google Scholar 

  • Alexeyev MF, Shokolenko IN (1995) Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of gram-negative bacteria. Gene 160:59–62

    PubMed  CAS  Google Scholar 

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    PubMed  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    PubMed  CAS  Google Scholar 

  • Araya CL, Payen C, Dunham MJ, Fields S (2010) Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomic 11:88

    Google Scholar 

  • Atsumi S, Wu TY, Machado IM, Huang WC, Chen PY, Pellegrini M, Liao JC (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449

    PubMed  Google Scholar 

  • Atwood KC, Schneider LK, Ryan FJ (1951) Periodic selection in Escherichia coli. Proc Natl Acad Sci U S A 37:146–155

    PubMed  CAS  Google Scholar 

  • Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (2002) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 79:568–579

    PubMed  CAS  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    PubMed  CAS  Google Scholar 

  • Braslavsky I, Hebert B, Kartalov E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100:3960–3964

    PubMed  CAS  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    PubMed  CAS  Google Scholar 

  • Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:17845–17850

    PubMed  CAS  Google Scholar 

  • Charusanti P, Conrad TM, Knight EM, Venkataraman K, Fong NL, Xie B, Gao Y, Palsson BO (2010) Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene. PLoS Genet 6:e1001186

    PubMed  Google Scholar 

  • Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE (1997) Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Biotechnol Prog 13:768–775

    PubMed  CAS  Google Scholar 

  • Church GM, Deamer DW, Branton D, Baldarelli R, Kasianowicz J (1998) Characterization of individual polymer molecules based on monomer-interface interactions. Harvard College EP0815438

    Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    PubMed  CAS  Google Scholar 

  • Conrad TM, Joyce AR, Applebee MK, Barrett CL, Xie B, Gao Y, Palsson BO (2009) Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol 10:R118

    PubMed  Google Scholar 

  • Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM, Lewis NE, Landick R, Palsson BO (2010) RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci U S A 107:20500–20505

    PubMed  CAS  Google Scholar 

  • Conrad TM, Lewis NE, Palsson BO (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509

    PubMed  Google Scholar 

  • Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–2050

    PubMed  CAS  Google Scholar 

  • Cruz-Toledo J, McKeague M, Zhang X, Giamberardino A, McConnell E, Francis T, Derosa MC, Dumontier M (2012) Aptamer base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database J Biol Databases Curation 2012: bas006

    Google Scholar 

  • Dawson PSS (1985) Continuous cultivation of microorganisms. CRC Crit Rev 2:315–372

    Google Scholar 

  • de Lorenzo V, Herrero M, Sánchez JM, Timmis KN (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol Ecol 27:211–224

    Google Scholar 

  • DeFraccesco L (2012) Life technologies promises $1,000 genome. Nat Biotechnol 14:126

    Google Scholar 

  • Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588–592

    PubMed  CAS  Google Scholar 

  • Drake JW (1999) The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann N Y Acad Sci 870:100–107

    PubMed  CAS  Google Scholar 

  • Dykhuizen D, Hartl DL (1980) Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics 96:801–817

    PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    PubMed  CAS  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    PubMed  CAS  Google Scholar 

  • Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472:499–503

    PubMed  CAS  Google Scholar 

  • Ewald JC, Heux S, Zamboni N (2009) High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal Chem 81:3623–3629

    PubMed  CAS  Google Scholar 

  • Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ, Palsson BO (2010) Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab Eng 12:173–186

    PubMed  CAS  Google Scholar 

  • Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623

    PubMed  CAS  Google Scholar 

  • Fong SS (2009) Evolutionary engineering of industrially important microbial phenotypes. Metab Pathw Eng Handb 1:1–15

    Google Scholar 

  • Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005a) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91:643–648

    PubMed  CAS  Google Scholar 

  • Fong SS, Joyce AR, Palsson BO (2005b) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15:1365–1372

    PubMed  CAS  Google Scholar 

  • Friedman L, Alder JD, Silverman JA (2006) Genetic changes that correlate with reduced susceptibility to daptomycin in staphylococcus aureus. Antimicrob Agents Chemother 50:2137–2145

    PubMed  CAS  Google Scholar 

  • Friesen ML, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution 58:245–260

    PubMed  Google Scholar 

  • Gabriel A, Dapprich J, Kunkel M, Gresham D, Pratt SC, Dunham MJ (2006) Global mapping of transposon location. PLoS Genet 2:e212

    PubMed  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    PubMed  CAS  Google Scholar 

  • Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BO (2006) Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput Biol 2:e101

    PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Method 6:343–345

    CAS  Google Scholar 

  • Gillespie JH (1984) Molecular evolution over the mutational landscape. Evolution 38:1116–1129

    CAS  Google Scholar 

  • Goodarzi H, Hottes AK, Tavazoie S (2009) Global discovery of adaptive mutations. Nat Method 6:581–583

    CAS  Google Scholar 

  • Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535

    PubMed  CAS  Google Scholar 

  • Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e103

    Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    PubMed  CAS  Google Scholar 

  • Hayden EC (2012) Sequencing set to alter clinical landscape. Nature 482(7385):288

    Google Scholar 

  • Helling RB, Vargas CN, Adams J (1987) Evolution of Escherichia coli during growth in a constant environment. Genetics 116:349–358

    PubMed  CAS  Google Scholar 

  • Henkin TM (2008) Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22:3383–3390

    PubMed  CAS  Google Scholar 

  • Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BO (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 38:1406–1412

    PubMed  CAS  Google Scholar 

  • Hillesland KL, Stahl DA (2010) Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc Natl Acad Sci U S A 107:2124–2129

    PubMed  CAS  Google Scholar 

  • Højer-Pedersen J, Smedsgaard J, Nielsen J (2008) The yeast metabolome addressed by electrospray ionization mass spectrometry: initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry. Metabolomics 4(4):393–405

    Google Scholar 

  • Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847

    PubMed  CAS  Google Scholar 

  • Jin YS, Stephanopoulos G (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 9:337–347

    PubMed  CAS  Google Scholar 

  • Joyce GF (1989) Amplification, mutation and selection of catalytic RNA. Gene 82:83–87

    PubMed  CAS  Google Scholar 

  • Kao CM (1999) Functional Genomic technologies: creating new paradigms for fundamental and applied biology. Biotechnol Prog 15:304–311

    PubMed  CAS  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770–13773

    PubMed  CAS  Google Scholar 

  • Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128:11–45

    PubMed  CAS  Google Scholar 

  • Kishimoto T, Iijima L, Tatsumi M, Ono N, Oyake A, Hashimoto T, Matsuo M, Okubo M, Suzuki S, Mori K, Kashiwagi A, Furusawa C, Ying BW, Yomo T (2010) Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution. PLoS Genet 6:e1001164

    PubMed  Google Scholar 

  • Klug SJ, Famulok M (1994) All you wanted to know about SELEX. Mol Biol Rep 20:97–107

    PubMed  CAS  Google Scholar 

  • Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn MM, Pronk JT, Slijper M, Heck AJ (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:2006.0026

    PubMed  Google Scholar 

  • Lee DH, Palsson BO (2010) Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-propanediol. Appl Environ Microbiol 76:4158–4168

    PubMed  CAS  Google Scholar 

  • Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–85

    PubMed  CAS  Google Scholar 

  • Lee JW, Kim TY, Jang YS, Choi S, Lee SY (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29:370–378

    PubMed  CAS  Google Scholar 

  • Leimkühler M, Meyers H (2005) Patenting in evolutionary biotechnology evolutionary methods in Biotechnology. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 191–209

    Google Scholar 

  • Lenski RE, Mongold JA, Sniegowski PD, Travisano M, Vasi F, Gerrish PJ, Schmidt TM (1998) Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie van Leeuwenhoek 73:35–47

    PubMed  CAS  Google Scholar 

  • Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, Konig R, Smith RD, Palsson BO (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390

    PubMed  Google Scholar 

  • Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci U S A 108:8617–8622

    PubMed  CAS  Google Scholar 

  • Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101:647–653

    PubMed  CAS  Google Scholar 

  • Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    PubMed  CAS  Google Scholar 

  • Molenaar D, van Berlo R, de Ridder D, Teusink B (2009) Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol 5:323

    PubMed  Google Scholar 

  • Muller HJ (1932) Some genetic aspects of Sex. Am Nat 66:118–138

    Google Scholar 

  • Müller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    PubMed  Google Scholar 

  • Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716

    PubMed  CAS  Google Scholar 

  • Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 71:1373–1386

    PubMed  CAS  Google Scholar 

  • Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184

    PubMed  CAS  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301

    PubMed  CAS  Google Scholar 

  • Patil KR, Rocha I, Forster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308

    Google Scholar 

  • Petri R, Schmidt-Dannert C (2004) Dealing with complexity: evolutionary engineering and genome shuffling. Curr Opin Biotechnol 15:298–304

    PubMed  CAS  Google Scholar 

  • Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–386

    PubMed  CAS  Google Scholar 

  • Qi L, Lucks JB, Liu CC, Mutalik VK, Arkin AP (2012) Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res 40:5775–5786

    PubMed  CAS  Google Scholar 

  • Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137:903–917

    PubMed  CAS  Google Scholar 

  • Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    PubMed  CAS  Google Scholar 

  • Rowlands RT (1982) Industrial fungal genetics and strain selection. In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi”, volume 4 of “fungal technology”. Edward Arnold (Publishers) Ltd, London, pp 346–372

    Google Scholar 

  • Rowlands RT (1984) Industrial strain improvement: mutagenesis and random screening procedures. Enzyme Microb Technol 6:3–10

    CAS  Google Scholar 

  • Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    PubMed  CAS  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169

    PubMed  CAS  Google Scholar 

  • Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wuthrich K, Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688

    PubMed  CAS  Google Scholar 

  • Schneider D, Lenski RE (2004) Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 155:319–327

    PubMed  CAS  Google Scholar 

  • Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci U S A 99:10528–10532

    PubMed  CAS  Google Scholar 

  • Sinha J, Topp S, Gallivan JP (2011) From SELEX to cell dual selections for synthetic riboswitches. Methods Enzymol 497:207–220

    PubMed  CAS  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998

    PubMed  CAS  Google Scholar 

  • Sorgeloos P, Van Outryve E, Persoone G, Cattoir-Reynaerts A (1976) New type of turbidostat with intermittent determination of cell density outside the culture vessel. Appl Environ Microbiol 31:327–331

    PubMed  CAS  Google Scholar 

  • Steipe B (1999) Evolutionary approaches to protein engineering. Curr Top Microbiol Immunol 243:55–86

    PubMed  CAS  Google Scholar 

  • Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26:536–543

    PubMed  CAS  Google Scholar 

  • Thiele I, Fleming RM, Bordbar A, Schellenberger J, Palsson BO (2010) Functional characterization of alternate optimal solutions of Escherichia coli’s transcriptional and translational machinery. Biophys J 98:2072–2081

    PubMed  CAS  Google Scholar 

  • Tipton KA, Dueber J (2010) Shaking up genome engineering. Nat Biotechnol 28:812–813

    PubMed  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    PubMed  CAS  Google Scholar 

  • Tyo KE, Zhou H, Stephanopoulos GN (2006) High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. Strain PCC6803. Appl Environ Microbiol 72:3412–3417

    PubMed  CAS  Google Scholar 

  • Valente AXCN, Fong SS (2011) High-throughput biologically optimized search engineering approach to synthetic biology. eprint arXiv:1103.5490

    Google Scholar 

  • Velicer GJ, Raddatz G, Keller H, Deiss S, Lanz C, Dinkelacker I, Schuster SC (2006) Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc Natl Acad Sci U S A 103:8107–8112

    PubMed  CAS  Google Scholar 

  • Vinci VA, Byng G (1999) Strain improvement by non recombinant methods. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, second edition. ASM Press, Washington, DC, pp 103–113

    Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Google Scholar 

  • Waddington CH (1959) Evolutionary systems; animal and human. Nature 183:1634–1638

    PubMed  CAS  Google Scholar 

  • Waddington CH (1960) Experiments in canalising selection. Genet Res 1:140–150

    Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    PubMed  CAS  Google Scholar 

  • Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–862

    PubMed  CAS  Google Scholar 

  • Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288

    PubMed  CAS  Google Scholar 

  • Witkin EM (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40:869–907

    PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1988) Surfaces of selective value revisited. Am Nat 131:115–123

    Google Scholar 

  • Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad Sci U S A 99:16587–16591

    PubMed  CAS  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    PubMed  CAS  Google Scholar 

  • Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261

    PubMed  CAS  Google Scholar 

  • Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO (2006) Fermentation of 12 % (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett 28:663–670

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. Fong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vanee, N., Fisher, A.B., Fong, S.S. (2012). Evolutionary Engineering for Industrial Microbiology. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_3

Download citation

Publish with us

Policies and ethics