Skip to main content

Genetic Modification and Bioprocess Optimization for S-Adenosyl-L-methionine Biosynthesis

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

S-Adenosyl-L-methionine is an important bioactive sulfur-containing amino acid. Large scale preparation of the amino acid is of great significance. S-Adenosyl-L-methionine can be synthesized from L-methionine and adenosine triphosphate in a reaction catalyzed by methionine adenosyltransferase. In order to enhance S-adenosyl-L-methionine biosynthesis by industrial microbial strains, various strategies have been employed to optimize the process. Genetic manipulation has largely focused on enhancement of expression and activity of methionine adenosyltransferase. This has included its overexpression in Pichia pastoris, Saccharomyces cerevisiae and Escherichia coli, molecular evolution, and fine-tuning of expression by promoter engineering. Furthermore, knocking in of Vitreoscilla hemoglobin and knocking out of cystathionine-β-synthase have also been effective strategies. Besides genetic modification, novel bioprocess strategies have also been conducted to improve S-adenosyl-L-methionine synthesis and inhibit its conversion. This has involved the optimization of feeding modes of methanol, glycerol and L-methionine substrates. Taken together considerable improvements have been achieved in S-adenosyl-L-methionine accumulation at both flask and fermenter scales. This review provides a contemporary account of these developments and identifies potential methods for further improvements in the efficiency of S-adenosyl-L-methionine biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CBS:

Cystathionine-β-synthase

C-source:

Carbon source

L-Met:

L-methionine

MAT:

Methionine adenosyltransferase

PAOX :

Promoter of alcohol oxidase 1 gene

PGAP :

Promoter of glyceraldehyde-3-phosphate dehydrogenase gene

SAH:

S-adenosyl-L-homocysteine

SAM:

S-adenosyl-L-methionine

VHb:

Vitreoscilla hemoglobin

References

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102:12678–12683

    Article  PubMed  CAS  Google Scholar 

  • Andersen HW, Pedersen MB, Hammer K, Jensen PR (2001) Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur J Biochem 268:6379–6389

    Article  PubMed  CAS  Google Scholar 

  • Bakke I, Berg L, Aune TE, Brautaset T, Sletta H, Tondervik A, Valla S (2009) Random mutagenesis of the PM promoter as a powerful strategy for improvement of recombinant-gene expression. Appl Environ Microbiol 75:2002–2011

    Article  PubMed  CAS  Google Scholar 

  • Barcelo HA, Wiemeyer JC, Sagasta CL, Macias M, Barreira JC (1990) Experimental osteoarthritis and its course when treated with S-adenosyl-L-methionine. Rev Clin Esp 187:74–78

    PubMed  CAS  Google Scholar 

  • Bhave SL, Chattoo BB (2003) Expression of vitreoscilla hemoglobin improves growth and levels of extracellular enzyme in Yarrowia lipolytica. Biotechnol Bioeng 84:658–666

    Article  PubMed  CAS  Google Scholar 

  • Catoni GL (1952) The nature of the active methyl donor formed enzymatically from L-methionine and adenosinetriphosphate. J Am Chem Soc 74:2942–2943

    Article  Google Scholar 

  • Catoni GL (1953) S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem 204:403–416

    PubMed  CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methalotropic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    Article  PubMed  CAS  Google Scholar 

  • Chan SY, Appling DR (2003) Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae. J Biol Chem 278:43051–43059

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chu J, Zhang S, Zhuang Y, Qian J, Wang Y, Hu X (2007) Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol 74:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9:1316–1323

    PubMed  CAS  Google Scholar 

  • Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnol (NY) 11:905–910

    Article  CAS  Google Scholar 

  • De Mey M, Maertens J, Lequeux GJ, Soetaert WK, Vandamme EJ (2007) Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol 7:34. doi:10.1186/1472-6750-7-34

    Article  PubMed  Google Scholar 

  • Dikshit KL, Webster DA (1988) Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene 70:377–386

    Article  PubMed  CAS  Google Scholar 

  • Friedel HA, Goa KL, Benfield P (1989) S-adenosyl-L-methionine. A review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism. Drugs 38:389–416

    Article  PubMed  CAS  Google Scholar 

  • Gleeson MA, Sudbery PE (1988) The methylotrophic yeasts. Yeast 4:1–15

    Article  CAS  Google Scholar 

  • Gross A, Geresh S, Whitesides GM (1983) Enzymatic synthesis of S-adenosyl-L-methionine from L-methionine and ATP. Appl Biochem Biotechnol 8:415–422

    Article  PubMed  CAS  Google Scholar 

  • Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36:e76

    Article  PubMed  Google Scholar 

  • He J, Deng J, Zheng Y, Gu J (2006) A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of S-adenosyl-L-methionine synthase and knocking out of cystathionine-beta synthase. J Biotechnol 126:519–527

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Chu J, Zhang S, Zhuang Y, Wang Y, Zhu S, Zhu Z, Yuan Z (2007) A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-L-methionine by methylotrophic Pichia pastoris. Enzyme Microb Technol 40:669–674

    Article  CAS  Google Scholar 

  • Hu X, Chu J, Zhang Z, Zhang S, Zhuang Y, Wang Y, Guo M, Chen H, Yuan Z (2008) Effects of different glycerol feeding strategies on S-adenosyl-L-methionine biosynthesis by PGAP-driven Pichia pastoris overexpressing methionine adenosyltransferase. J Biotechnol 137:44–49

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S (2009a) DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris. J Biotechnol 141:97–103

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S (2009b) Optimization of L-methionine feeding strategy for improving S-adenosyl-L-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris. Appl Microbiol Biotechnol 83:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Gou X, Hu H, Xu Q, Lu Y, Cheng J (2011) Enhanced S-adenosyl-L-methionine production in Saccharomyces cerevisiae by spaceflight culture, overexpressing methionine adenosyltransferase and optimizing cultivation. J Appl Microbiol 112:683–694

    Article  Google Scholar 

  • Lee SW, Park BS, Choi ES, Oh MK (2010) Overexpression of ethionine resistance gene for maximized production of S-adenosylmethionine in Saccharomyces cerevisiae sake kyokai No 6. Korean J Chem Eng 27(2):587–589

    Article  CAS  Google Scholar 

  • Li DY, Yu J, Tian L, Ji XS, Yuan ZY (2002) Production of SAM by recombinant Pichia pastoris. Chin J Biotechnol 3:295–299

    Google Scholar 

  • Lieber CS (1999) Role of S-adenosyl-L-methionine in the treatment of liver diseases. J Hepatol 30:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Lin JP, Tian J, You JF, Jin ZH, Xu ZN, Cen PL (2004) An effective strategy for the co-production of S-adenosyl-L-methionine and glutathione by fed-batch fermentation. Biochem Eng J 21:19–25

    Article  CAS  Google Scholar 

  • Luo Y, Yuan Z, Luo G, Zhao F (2008) Expression of secreted His-tagged S-adenosylmethionine synthetase in the methylotrophic yeast Pichia pastoris and its characterization, one-step purification, and immobilization. Biotechnol Prog 24:214–220

    Article  PubMed  CAS  Google Scholar 

  • Mato JM, Pajares MA, Mingorance J, and Avarez L (1995) Production of S-adenosylmethionine (SAM) by fermentation of transformed bacteria. European Patent, vol 0647712A1, edited by E. P. Office.

    Google Scholar 

  • Mato JM, Alvarez L, Ortiz P, Pajares MA (1997) S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 73:265–280

    Article  PubMed  CAS  Google Scholar 

  • Matos JR, Raushel FM, Wong CH (1987) S-Adenosylmethionine: study on chemical and enzymatic synthesis. Biotechnol Appl Biochem 9:39–52

    PubMed  CAS  Google Scholar 

  • Minas W, Brunker P, Kallio PT, Bailey JE (1998) Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Biotechnol Prog 14:561–566

    Article  PubMed  CAS  Google Scholar 

  • Mincheva K, Kamburova V, Balutzov V (2002) Production of S-adenosyl-L-methionine by a mutant strain of Kluyveromyces lactis. Biotechnol Lett 24:985–988

    Article  CAS  Google Scholar 

  • Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72:5266–5273

    Article  PubMed  CAS  Google Scholar 

  • Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U, Stephanopoulos G (2007) Engineering promoter regulation. Biotechnol Bioeng 96:550–558

    Article  PubMed  CAS  Google Scholar 

  • Park J, Tai JZ, Roessner CA, Scott AI (1996) Enzymic synthesis of s-adenosyl-L-methionine on the preparative scale. Bioorg Med Chem 4:2179–2185

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Schlenk F, Depalma RE (1957) The preparation of S-adenosylmethionine. J Biol Chem 229:1051–1057

    PubMed  CAS  Google Scholar 

  • Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnol (N Y) 12:181–184

    Article  CAS  Google Scholar 

  • Shiomi N, Fukuda H, Fukuda Y, Murata K, Kimura A (1990) Production of S-adenosyl-L-methionine by Saccharomyces cerevisiae cells carrying a gene for ethionine resistance. Biotechnol Bioeng 35:1120–1124

    Article  PubMed  CAS  Google Scholar 

  • Shiomi N, Fukuda H, Fukuda Y, Murata K, Kimura A (1991) Nucleotide sequence and characterization of a gene conferring resistance to ethionine in yeast Saccharomyces cerevisiae. J Ferment Bioeng 71:211–215

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1984) Unusual intracellular accumulation of S-adenosyl-L-methionine by microorganisms. Agric Biol Chem 48:2293–2300

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1986) Production of S-adenosyl-L-methionine by Saccharomyces sake. J Biotechnol 4:345–354

    Article  CAS  Google Scholar 

  • Shiozaki S, Shimizu S, Yamada H (1989) S-Adenosyl-L-methionine production by Saccharomyces sake: optimization of the culture conditions for the production of cells with a high S-adenosyl-L-methionine content. Agric Biol Chem 53:3269–3274

    Article  CAS  Google Scholar 

  • Shobayashi M, Mukai N, Iwashita K, Hiraga Y, Iefuji H (2006) A new method for isolation of S-adenosylmethionine (SAM)-accumulating yeast. Appl Microbiol Biotechnol 69:704–710

    Article  PubMed  CAS  Google Scholar 

  • Shobayashi M, Fujii T, Iefuji H (2007) Effects of accumulated S-adenosylmethionine on growth of yeast cells. Biosci Biotechnol Biochem 71:1595–1597

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209

    Article  PubMed  CAS  Google Scholar 

  • Torta R, Cicolin A, Keller R (1998) Transmethylation and affective disorders. Arch Gerontol Geriatr Suppl 6:499–506

    Article  CAS  Google Scholar 

  • Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44

    Article  PubMed  CAS  Google Scholar 

  • Yu ZL, Wu XJ, Li DY, Yang S, Zhou Z, Cai J, Yuan ZY (2003) Enhancement of the production of SAM by overexpression of SAM synthetase in Pichia pastoris. Acta Biochem Biophys Sin 35:127–132

    CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by grants from National key Basic Research Program of China (2012CB725202), the Public Topic of Key Laboratory of Industrial Biotechnology, Ministry of Education (KLIB-KF201003) and State Key Laboratory of Food Science and Technology, Jiangnan University (SKLF-TS-201124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hu, X., Quinn, P.J., Wang, Z., Han, G., Wang, X. (2012). Genetic Modification and Bioprocess Optimization for S-Adenosyl-L-methionine Biosynthesis. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_16

Download citation

Publish with us

Policies and ethics