Skip to main content

Towards Synthetic Gene Circuits with Enhancers: Biology’s Multi-input Integrators

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

One of the greatest challenges facing synthetic biology is to develop a technology that allows gene regulatory circuits in microbes to integrate multiple inputs or stimuli using a small DNA sequence “foot-print”, and which will generate precise and reproducible outcomes. Achieving this goal is hindered by the routine utilization of the commonplace σ70 promoters in gene-regulatory circuits. These promoters typically are not capable of integrating binding of more than two or three transcription factors in natural examples, which has limited the field to developing integrated circuits made of two-input biological “logic” gates. In natural examples the regulatory elements, which integrate multiple inputs are called enhancers. These regulatory elements are ubiquitous in all organisms in the tree of life, and interestingly metazoan and bacterial enhancers are significantly more similar in terms of both Transcription Factor binding site arrangement and biological function than previously thought. These similarities imply that there may be underlying enhancer design principles or grammar rules by which one can engineer novel gene regulatory circuits. However, at present our current understanding of enhancer structure-function relationship in all organisms is limited, thus preventing us from using these objects routinely in synthetic biology application. In order to alleviate this problem, in this book chapter, I will review our current view of bacterial enhancers, allowing us to first highlight the potential of enhancers to be a game-changing tool in synthetic biology application, and subsequently to draw a road-map for developing the necessary quantitative understanding to reach this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NRI:

nitrogen regulation I

RNAP:

RNA polymerase

TF:

transcription factors

TSS:

transcriptional start site

References

  • Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci U S A 79:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Chen Y, Nakajima K, Yamaguchi Y, Wada T, Handa H (2006) Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol Cell Biol 24:2444–2454

    Google Scholar 

  • Amit R (2012) TetR anti-cooperative and cooperative interactions in synthetic enhancers. J Comp Biol 19:115–125

    Article  CAS  Google Scholar 

  • Amit R, Gileadi O, Stavans J (2004) Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions. Proc Natl Acad Sci U S A 101:11605–11610

    Article  PubMed  CAS  Google Scholar 

  • Amit R, Garcia HG, Phillips R, Fraser SE (2011) Building enhancers from the ground up: a synthetic biology approach. Cell 146:105–118

    Article  PubMed  CAS  Google Scholar 

  • Anderson JC, Voigt CA, Arkin AP (2007) Environmental signal integration by a modular AND gate. Mol Syst Biol 3:133

    Article  PubMed  Google Scholar 

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:1–14

    Article  Google Scholar 

  • Atkinson MR, Pattaramanon N, Ninfa AJ (2002) Governor of the glnAp2 promoter of Escherichia coli. Mol Microbiol 46:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MR, Savageau MA, Myers JT, Ninfa AJ (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597–607

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva TA, Rhodius VA, Webster CL, Busby SJ (1998) Transcription activation at promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein: organisation of the RNA polymerase alpha subunits. J Mol Biol 277:789–804

    Article  PubMed  CAS  Google Scholar 

  • Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Kuhlman T, Phillips R (2005a) Transcriptional regulation by the numbers: applications. Curr Opin Genet Dev 15:125–135

    Article  PubMed  CAS  Google Scholar 

  • Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R (2005b) Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15:116–124

    Article  PubMed  CAS  Google Scholar 

  • Boehm AK, Saunders A, Werner J, Lis JT (2003) Transcription factor and polymerase recruitment, modification, movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23:7628–7637

    Article  PubMed  CAS  Google Scholar 

  • Bolouri H, Davidson EH (2002) Modeling DNA sequence-based cis-regulatory gene networks. Dev Biol 246:2–13

    Article  PubMed  CAS  Google Scholar 

  • Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial transcription logic. Proc Natl Acad Sci U S A 100:5136–5141

    Article  PubMed  CAS  Google Scholar 

  • Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD (2000) The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 182:4129–4136

    Article  PubMed  CAS  Google Scholar 

  • Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144:327–339

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Price DH (2007) Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation. J Biol Chem 282:21901–21912

    Article  PubMed  CAS  Google Scholar 

  • Datta RR, Small S (2011) Gene regulation: piecing together the puzzle of enhancer evolution. Curr Biol 21:R542–R543

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH (2001) Genomic regulatory systems: development and evolution. Academic, New York

    Google Scholar 

  • Davidson EH (2006) The regulatory genome. Elsevier, Burlington

    Google Scholar 

  • Driever W, Nusslein-Volhard C (1989) The bicoid protein is a positive regulator of hunchback transcription in the early drosophila embryo. Nature 337:138–143

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Thoma G, Nusslein-Volhard C (1989) Determination of spatial domains of zygotic gene expression in the drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340:363–367

    Article  PubMed  CAS  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  PubMed  CAS  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ (2009) Synthetic gene networks that count. Science 324:1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97:168302

    Article  PubMed  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  PubMed  CAS  Google Scholar 

  • Gilmour DS (2009) Promoter proximal pausing on genes in metazoans. Chromosoma 118:1–10

    Article  PubMed  CAS  Google Scholar 

  • Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103:15200–15205

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88

    Article  PubMed  CAS  Google Scholar 

  • Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, Cantor CR, Elston TC, Collins JJ (2006) A bottom-up approach to gene regulation. Nature 439:856–860

    Article  PubMed  CAS  Google Scholar 

  • Huo YX, Tian ZX, Rappas M, Wen J, Chen YC, You CH, Zhang X, Buck M, Wang YP, Kolb A (2006) Protein-induced DNA bending clarifies the architectural organization of the sigma54-dependent glnAp2 promoter. Mol Microbiol 59:168–180

    Article  PubMed  CAS  Google Scholar 

  • Jelsbak L, Givskov M, Kaiser D (2005) Enhancer-binding proteins with a forkhead- associated domain and the σ54 regulon in myxococcus Xanthus fruiting body development. Proc Natl Acad Sci U S A 102:3010–3015

    Article  PubMed  CAS  Google Scholar 

  • Joung JK, Le LU, Hochschild A (1993) Synergistic activation of transcription by Escherichia coli cAMP receptor protein. Proc Natl Acad Sci U S A 90:3083–3087

    Article  PubMed  CAS  Google Scholar 

  • Joung JK, Koepp DM, Hochschild A (1994) Synergistic activation of transcription by bacteriophage lambda cI protein and E. coli cAMP receptor protein. Science 265:1863–1866

    Article  PubMed  CAS  Google Scholar 

  • Kiupakis AK, Reitzer LJ (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184:2940–2950

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Schleif RF (1989) In vivo DNA loops in araCBAD: size limits and helical repeat. Proc Natl Acad Sci U S A 86:476–480

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B (1993) The regulation of nitrogen utilization in enteric bacteria. J Cell Biochem 51:34–40

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Oehler S, Muller-Hill B (1996) Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. J Mol Biol 257:21–29

    Article  PubMed  CAS  Google Scholar 

  • Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39:1507–1511

    Article  PubMed  CAS  Google Scholar 

  • Ninfa AJ, Peng J (2005) PII signal transduction proteins:sensors of α-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8:168–173

    Article  PubMed  CAS  Google Scholar 

  • Ninfa AJ, Reitzer LJ, Magasanik B (1987) Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell 50:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31:69–73

    Article  PubMed  CAS  Google Scholar 

  • Paulsson J (2004) Summing up the noise in gene networks. Nature 427:415–418

    Article  PubMed  CAS  Google Scholar 

  • Pedraza JM, Paulsson J (2008) Effects of moelcular memory and bursting on fluctuations in gene expression. Science 319:339–343

    Article  PubMed  CAS  Google Scholar 

  • Rappas M, Bose D, Zhang X (2007) Bacterial enhancer-binding proteins: unlocking sigma-54 dependent gene transcription. Curr Opin Struct Biol 17:110–116

    Article  PubMed  CAS  Google Scholar 

  • Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen EB, Lis JT (1993) In vivo transcriptional pausing and cap formation on three drosophila heat shock genes. Proc Natl Acad Sci U S A 90:7923–7927

    Article  PubMed  CAS  Google Scholar 

  • Renner DB, Yamaguchi Y, Wada T, Handa H, Price DH (2001) A highly purified RNA polymerase II elongation control system. J Biol Chem 276:42601–42609

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell level. Science 307:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Sanchez A, Garcia HG, Jones D, Phillips R, Kondev J (2011) Effect of promoter architecture on the cell-to-cell variability in gene expression. PLOS Comput Biol 7:e1001100

    Article  PubMed  CAS  Google Scholar 

  • Schulz A, Langowski J, Rippe K (2000) The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase sigma(54) holoenzyme. J Mol Biol 300:709–725

    Article  PubMed  CAS  Google Scholar 

  • Small S, Blair A, Levine M (1992) Regulation of even-skipped stripe 2 in the drosophilla embryo. EMBO J 11:4047–4057

    PubMed  CAS  Google Scholar 

  • Stathopoulos A, Levine M (2005) Genomic regulatory networks and animal development. Dev Cell 9:449–462

    Article  PubMed  CAS  Google Scholar 

  • Su W, Porter S, Kustu S, Echols H (1990) DNA-looping and enhacer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc Natl Acad Sci U S A 87:5504–5508

    Article  PubMed  CAS  Google Scholar 

  • Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD (2009) A synthetic genetic edge detection program. Cell 137:1272–1281

    Article  PubMed  Google Scholar 

  • Tasmir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:212–215

    Article  Google Scholar 

  • Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A 98:8614–8619

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Hoover TR (2001) Transcriptional regulation at a distance in bacteria. Curr Opin Microbiol 4:138–144

    Article  PubMed  CAS  Google Scholar 

  • Yuh CH, Bolouri H, Davidson EH (2001) Cis-regulatory logic in the endo16 gene: switching from specification to a differentiation mode of control. Development 128:617–629

    PubMed  CAS  Google Scholar 

  • Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA (2007) RNA polymerase stalling at developmental control genes in the drosophila melanogaster embryo. Nat Genet 39:1512–1516

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Chaney M, Wigneshweraraj SR, Schumacher J, Bordes P, Cannon W, Buck M (2002) Mechanochemical ATPases and transcriptional activation. Mol Microbiol 45:895–893

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Klatt A, Gilmour DS, Henderson AJ (2007) Negative elongation factor NELF represses human immunodeficiency virus transcription by pausing the RNA polymerase II complex. J Biol Chem 282:16981–16988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roee Amit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amit, R. (2012). Towards Synthetic Gene Circuits with Enhancers: Biology’s Multi-input Integrators. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_1

Download citation

Publish with us

Policies and ethics