Skip to main content

GAPDH, as a Virulence Factor

  • Chapter
  • First Online:
GAPDH: Biological Properties and Diversity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 985))

Abstract

Pathogens, such as bacteria, viruses, protozoa and fungi, generate molecules that provide them with a selective advantage, often at the expense of the host. These molecules, or virulence factors, enable pathogens to colonize the host through several mechanisms. Some molecules offer the pathogen an advantage through better adhesion to host tissues, or superior invasive capability. Some allow the pathogen to evade or suppress the host’s immune system. Some molecules enable intracellular parasites to disable cytoprotective mechansims, by re-directing the host phagocytic vesicles. Many of these molecules are proteins that are exported to the cell’s surface or are secreted. As unlikely as it seems, GAPDH appears to play a role as a virulence factor in a number of pathogenic organisms by the mechanisms just described. This highly conserved protein is found on the outer surface or as a secretory product of these organisms. The process by which pathogenic GAPDH, which has >40 % sequence identity to human GAPDH, is exported and attached to the outer surface of cells remains unknown. This chapter also presents a previously unpublished proposed docking sequence on GAPDH. There is also discussion of the potential of using the antigenic properties of pathogenic GAPDH for medical as well as for veterinary purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pancholi V, Chhatwal GS (2003) Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:1–11

    Article  Google Scholar 

  2. Broder CC, Lottenberg R, von Mering GO et al (1991) Isolation of a prokaryotic plasmin receptor. Relationship to a plasminogen activator produced by the same micro-organism. J Biol Chem 266:4922–4928

    PubMed  CAS  Google Scholar 

  3. Pancholi V, Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426

    Article  PubMed  CAS  Google Scholar 

  4. Guimaraes AM, Santos AP, SanMiguel P et al (2011) Complete genome sequence of Mycoplasma suis and insights into its biology and adaption to an erythrocyte niche. PLoS One 6:e19574

    Article  PubMed  CAS  Google Scholar 

  5. Terao Y, Yamaguchi M, Hamada S et al (2006) Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281:14215–14223

    Article  PubMed  CAS  Google Scholar 

  6. Lottenberg R, Broder CC, Boyle MD (1987) Identification of a specific receptor for plasmin on a group A streptococcus. Infect Immun 55:1914–1918

    PubMed  CAS  Google Scholar 

  7. Lottenberg R, Broder CC, Boyle MD et al (1992) Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol 174:5204–5210

    PubMed  CAS  Google Scholar 

  8. Boël G, Jin H, Pancholi V (2005) Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect Immun 73:6237–6248

    Article  PubMed  Google Scholar 

  9. Pancholi V, Fischetti VA (1993) Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci USA 90:8154–8158

    Article  PubMed  CAS  Google Scholar 

  10. Pancholi V, Fischetti VA (1997) Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: signal transduction between streptococci and pharyngeal cells. J Exp Med 186:1633–1643

    Article  PubMed  CAS  Google Scholar 

  11. Jin H, Song YP, Boel G et al (2005) Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol 350:27–41

    Article  PubMed  CAS  Google Scholar 

  12. Jin H, Agarwal S, Agarwal S et al (2011) Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for Streptococcus pyogenes virulence. MBio 2:e00068-11

    Article  PubMed  Google Scholar 

  13. Fischetti VA, Pancholi V, Schneewind O (1990) Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram positive cocci. Mol Microbiol 4:1603–1605

    Article  PubMed  CAS  Google Scholar 

  14. Navarre WW, Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol Microbiol 14:115–121

    Article  PubMed  CAS  Google Scholar 

  15. D’Costa SS, Romer TG, Boyle MD (2000) Analysis of expression of a cytosolic enzyme on the surface of Streptococcus pyogenes. Biochem Biophys Res Commun 278:826–832

    Article  PubMed  Google Scholar 

  16. Seifert KN, McArthur WP, Bleiweis AS et al (2003) Characterization of group B streptococcal glyceraldehyde-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein-protein interactions. Can J Microbiol 49:350–356

    Article  PubMed  CAS  Google Scholar 

  17. Madureira P, Baptista M, Vieira M et al (2007) Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J Immunol 178:1379–1387

    PubMed  CAS  Google Scholar 

  18. Fluegge K, Schweier O, Schiltz E et al (2004) Identification and immunoreactivity of proteins released from Streptococcus agalactiae. Eur J Clin Microbiol Infect Dis 23:818–824

    Article  PubMed  CAS  Google Scholar 

  19. Winram SB, Richardson LC, Lottenberg R (1995) Mutational analysis of a plasmin receptor protein expressed by group A streptococci. Dev Biol Stand 85:199–202

    PubMed  CAS  Google Scholar 

  20. Bergmann S, Rohde M, Hammerschmidt S (2004) Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72:2416–2419

    Article  PubMed  CAS  Google Scholar 

  21. Teles C, Smith A, Lang S (2012) Antibiotic modulation of the plasminogen binding ability of viridans group streptococci. Antimicrob Agents Chemother 56:458–463

    Article  PubMed  CAS  Google Scholar 

  22. Amano A, Fujiwara T, Nagata H et al (1997) Porphyromonas gingivalis fimbriae mediate coaggregation with Streptococcus oralis through specific domains. J Dent Res 76:852–857

    Article  PubMed  CAS  Google Scholar 

  23. Maeda K, Nagata H, Kuboniwa M et al (2004) Characterization of binding of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase to Porphyromonas gingivalis major fimbriae. Infect Immun 72:5475–5477

    Article  PubMed  CAS  Google Scholar 

  24. Nagata H, Iwasaki M, Maeda K et al (2009) Identification of the binding domain of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase for Porphyromonas gingivalis major fimbriae. Infect Immun 77:5130–5138

    Article  PubMed  CAS  Google Scholar 

  25. Maeda K, Nagata H, Nonaka A et al (2004) Oral streptococcal glyceraldehyde-3-phosphate dehydrogenase mediates interaction with Porphyromonas gingivalis fimbriae. Microbes Infect 6:1163–1170

    Article  PubMed  CAS  Google Scholar 

  26. Sojar HT, Genco RJ (2005) Identification of glyceraldehyde-3-phosphate dehydrogenase of epithelial cells as a second molecule that binds to Porphyromonas gingivalis fimbriae. FEMS Immunol Med Microbiol 45:25–30

    Article  PubMed  CAS  Google Scholar 

  27. Messick JB (2004) Hemotrophic mycoplasmas (hemoplasmas): a review and new insights into pathogenic potential. Vet Clin Pathol 33:2–13

    Article  PubMed  Google Scholar 

  28. Hoelzle LE, Hoelzle K, Helbling M et al (2007) MSG1, a surface-localised protein of Mycoplasma suis is involved in the adhesion to erythrocytes. Microbes Infect 9:466–474

    Article  PubMed  CAS  Google Scholar 

  29. Pancholi V, Chhatwal GS (2003) Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401

    Article  PubMed  CAS  Google Scholar 

  30. Alvarez RA, Blaylock MW, Baseman JB (2003) Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol 48:1417–1425

    Article  PubMed  CAS  Google Scholar 

  31. Matsuda T, Ando K, Sasaki T et al (1997) Purification of a Mycoplasma capricolum MCS4 RNA binding protein and cloning its gene. Nucleic Acids Symp Ser 37:187–188

    PubMed  CAS  Google Scholar 

  32. Dumke R, Hausner M, Jacobs E (2011) Role of Mycoplasma pneumoniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mediating interactions with the human extracellular matrix. Microbiology 157:2328–2338

    Article  PubMed  CAS  Google Scholar 

  33. Martínez JP, Gil ML, López-Ribot JL et al (1998) Serologic response to cell wall mannoproteins and proteins of Candida albicans. Clin Microbiol Rev 11:121–141

    PubMed  Google Scholar 

  34. Delgado ML, Gil ML, Gozalbo D (2003) Candida albicans TDH3 gene promotes secretion of internal invertase when expressed in Saccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein. Yeast 20:713–722

    Article  PubMed  CAS  Google Scholar 

  35. Chaffin WL, López-Ribot JL, Casanova M et al (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180

    PubMed  CAS  Google Scholar 

  36. Gil-Navarro I, Gil ML, Casanova M et al (1997) The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179:4992–4999

    PubMed  CAS  Google Scholar 

  37. Pitarch A, Pardo M, Jiménez A et al (1999) Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis 20:1001–1010

    Article  PubMed  CAS  Google Scholar 

  38. Gozalbo D, Gil-Navarro I, Azorín I et al (1998) The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 66:2052–2059

    PubMed  CAS  Google Scholar 

  39. Eichenbaum Z, Green BD, Scott JR (1996) Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 64:1956–1960

    PubMed  CAS  Google Scholar 

  40. Lee SF (1992) Identification and characterization of a surface protein releasing activity in Streptococcus mutans and other pathogenic streptococci. Infect Immun 60:4032–4039

    PubMed  CAS  Google Scholar 

  41. Pancholi V, Fischetti VA (1989) Identification of an endogenous membrane anchor-cleaving enzyme for group A streptococcal M protein. J Exp Med 170:2119–2133

    Article  PubMed  CAS  Google Scholar 

  42. Nelson D, Goldstein JM, Boatright K et al (2001) pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme. J Dent Res 80:371–377

    Article  PubMed  CAS  Google Scholar 

  43. Gase K, Gase A, Schirmer H et al (1996) Cloning, sequencing and functional overexpression of the Streptococcus equisimilis H46A gapC gene encoding a glyceraldehyde-3-phosphate dehydrogenase that also functions as a plasmin(ogen)-binding protein. Eur J Biochem 239:42–51

    Article  PubMed  CAS  Google Scholar 

  44. Isom DG, Castañeda CA, Cannon BR et al (2011) Large shifts in pKa values of lysine residues buried inside a protein. Proc Natl Acad Sci USA 108:5260–5265

    Article  PubMed  CAS  Google Scholar 

  45. Dessein AJ, Begley M, Demeure C et al (1988) Human resistance to Schistosoma mansoni is associated with IgG reactivity to a 37-kDa larval surface antigen. J Immunol 140:2727–2736

    PubMed  CAS  Google Scholar 

  46. Argiro LL, Kohlstädt SS, Henri SS et al (2000) Identification of a candidate vaccine peptide on the 37 kDa Schistosoma mansoni GAPDH. Vaccine 18:2039–2048

    Article  PubMed  CAS  Google Scholar 

  47. Rosinha GM, Myioshi A, Azevedo V et al (2002) Molecular and immunological characterisation of recombinant Brucella abortus glyceraldehyde-3-phosphate-dehydrogenase, a T- and B-cell reactive protein that induces partial protection when co-administered with an interleukin-12-expressing plasmid in a DNA vaccine formulation. J Med Microbiol 51:661–671

    PubMed  CAS  Google Scholar 

  48. de Lalla C, Sturniolo T, Abbruzzese L et al (1999) Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J Immunol 163:1725–1729

    PubMed  Google Scholar 

  49. Lifshitz S, Dagan R, Shani-Sekler M et al (2002) Age-dependent preference in human antibody responses to Streptococcus pneumoniae polypeptide antigens. Clin Exp Immunol 127:344–353

    Article  PubMed  CAS  Google Scholar 

  50. Liu F, Cui SJ, Hu W et al (2009) Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol Cell Proteomics 8:1236–1251

    Article  PubMed  CAS  Google Scholar 

  51. Ling E, Feldman G, Portnoi M et al (2004) Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 138:290–298

    Article  PubMed  CAS  Google Scholar 

  52. Perez-Casal J, Prysliak T (2007) Detection of antibodies against the Mycoplasma bovis glyceraldehyde-3-phosphate dehydrogenase protein in beef cattle. Microb Pathog 43:189–197

    Article  PubMed  CAS  Google Scholar 

  53. van der Merwe J, Prysliak T, Gerdts V et al (2011) Protein chimeras containing the Mycoplasma bovis GAPDH protein and bovine host-defence peptides retain the properties of the individual components. Microb Pathog 50:269–277

    Article  PubMed  Google Scholar 

  54. Argiro LL, Kohlstadt SS, Henri SS et al (2000) Identification of a candidate vaccine peptide on the 37 kDa Schistosoma mansoni GAPDH. Vaccine 18:2039–2048

    Article  PubMed  CAS  Google Scholar 

  55. Bolton A, Song XM, Willson P et al (2004) Use of the surface proteins GapC and Mig of Streptococcus dysgalactiae as potential protective antigens against bovine mastitis. Can J Microbiol 50:423–432

    Article  PubMed  CAS  Google Scholar 

  56. Fontaine MC, Perez-Casal J, Song XM et al (2002) Immunization of dairy cattle with recombinant Streptococcus uberis GapC or a chimeric CAMP antigen confers protection against heterologous bacterial challenge. Vaccine 20:2278–2286

    Article  PubMed  CAS  Google Scholar 

  57. Pitarch A, Nombela C, Gil C (2011) Prediction of the clinical outcome in invasive candidiasis patients based on molecular fingerprints of five anti-Candida antibodies in serum. Mol Cell Proteomics 10:M110.004010

    Article  PubMed  Google Scholar 

  58. Nadarajah VD, Ting D, Chan KK et al (2008) Selective cytotoxic activity against leukemic cell lines from mosquitocidal Bacillus thuringiensis parasporal inclusions. Southeast Asian J Trop Med Public Health 39:235–245

    PubMed  CAS  Google Scholar 

  59. Krishnan K, Ker JE, Mohammed SM et al (2010) Identification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells. J Biomed Sci 17:86

    Article  PubMed  Google Scholar 

  60. Tribble GD, Mao S, James CE et al (2006) A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion. Proc Natl Acad Sci USA 103:11027–11032

    Article  PubMed  CAS  Google Scholar 

  61. Goudot-Crozel V, Caillol D, Djabali M et al (1989) The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde-3P-dehydrogenase. J Exp Med 170:2065–2080

    Article  PubMed  CAS  Google Scholar 

  62. Madureira P, Andrade EB, Gama B et al (2011) Inhibition of IL-10 production by maternal antibodies against Group B Streptococcus GAPDH confers immunity to offspring by favoring neutrophil recruitment. PLoS Pathog 7:e1002363

    Article  PubMed  CAS  Google Scholar 

  63. Yamakami K, Yoshizawa N, Wakabayashi K et al (2000) The potential role for nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. Methods 21:185–197

    Article  PubMed  CAS  Google Scholar 

  64. Yoshizawa N, Oshima S, Sagel I et al (1992) Role of a streptococcal antigen in the pathogenesis of acute poststreptococcal glomerulonephritis. J Immunol 148:3110–3116

    PubMed  CAS  Google Scholar 

  65. Masuda M, Nakanishi K, Yoshizawa N et al (2003) Group A streptococcal antigen in the glomeruli of children with Henoch-Schönlein nephritis. Am J Kidney Dis 41:366–370

    Article  PubMed  Google Scholar 

  66. Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93

    Article  PubMed  CAS  Google Scholar 

  67. Almengor AC, Kinkel TL, Day SJ et al (2007) The catabolite control protein CcpA binds to Pmga and influences expression of the virulence regulator Mga in the Group A streptococcus. J Bacteriol 189:8405–8416

    Article  PubMed  CAS  Google Scholar 

  68. Alvarez-Dominguez C, Barbieri AM, Beron W et al (1996) Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome-endosome fusion. J Biol Chem 271:13834–13843

    Article  PubMed  CAS  Google Scholar 

  69. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149

    Article  PubMed  CAS  Google Scholar 

  70. Alvarez-Dominguez C, Madrazo-Toca F, Fernandez-Prieto L et al (2008) Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 9:325–337

    Article  PubMed  CAS  Google Scholar 

  71. Alvarez-Dominguez C, Roberts R, Stahl P (1997) Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome. J Cell Sci 110:731–743

    PubMed  CAS  Google Scholar 

  72. Masignani V, Balducci E, Serruto D et al (2004) In silico identification of novel bacterial ADP ribosyltransferases. Int J Med Microbiol 293:471–478

    Article  PubMed  CAS  Google Scholar 

  73. Jin M, Goldenring J (2006) The Rab11-FIP1/RCP gene codes for multiple protein transcripts related to the plasma membrane recycling system. Biochim Biophys Acta 1759:281–295

    Article  PubMed  CAS  Google Scholar 

  74. Sapay N, Guermeur Y, Deleage G (2006) Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinformatics 7:255

    Article  PubMed  Google Scholar 

  75. Schaumburg J, Diekmann O, Hagendorff P et al (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006

    Article  PubMed  CAS  Google Scholar 

  76. Trost M, Wehmhöner D, Kärst U et al (2005) Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 5:1544–1557

    Article  PubMed  CAS  Google Scholar 

  77. Karlin S, Theriot J, Mrazek J (2004) Comparative analysis of gene expression among low GþC gram-positive genomes. Proc Natl Acad Sci USA 101:6182–6187

    Article  PubMed  CAS  Google Scholar 

  78. Daubenberger CA, Tisdale EJ, Curcic M et al (2003) The N’-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol Chem 384:1227–1237

    Article  PubMed  CAS  Google Scholar 

  79. Fugier E, Salcedo SP, de Chastellier C et al (2009) The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 5:e1000487

    Article  PubMed  Google Scholar 

  80. Broeseker TA, Boyle MD, Lottenberg R (1988) Characterization of the interaction of human plasmin with its specific receptor on a group A streptococcus. Microb Pathog 5:19–27

    Article  PubMed  CAS  Google Scholar 

  81. Chhatwal GS (2002) Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol 10:205–208

    Article  PubMed  CAS  Google Scholar 

  82. Coleman JL, Benach JL (1999) Use of the plasminogen activation system by microorganisms. J Lab Clin Med 134:567–576

    Article  PubMed  CAS  Google Scholar 

  83. Lähteenmäki K, Kuusela P, Korhonen TK (2001) Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 25:531–552

    Article  PubMed  Google Scholar 

  84. Lähteenmäki K, Edelman S, Korhonen TK (2005) Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13:79–85

    Article  PubMed  Google Scholar 

  85. D’Costa SS, Boyle MD (2000) Interaction of group A streptococci with human plasmin(ogen) under physiological conditions. Methods 21:165–177

    Article  PubMed  Google Scholar 

  86. Egea L, Aguilera L, Giménez R et al (2007) Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol 39:1190–1203

    Article  PubMed  CAS  Google Scholar 

  87. Hurmalainen V, Edelman S, Antikainen J et al (2007) Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153(Pt 4):1112–1122

    Article  PubMed  CAS  Google Scholar 

  88. Modun B, Williams P (1999) The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 67:1086–1092

    PubMed  CAS  Google Scholar 

  89. Modun B, Kendall D, Williams P (1994) Staphylococci express a receptor for human transferrin: identification of a 42-kilodalton cell wall transferrin-binding protein. Infect Immun 62:3850–3858

    PubMed  CAS  Google Scholar 

  90. Raje CI, Kumar S, Harle A et al (2007) The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 282:3252–3261

    Article  PubMed  CAS  Google Scholar 

  91. Modun B, Evans RW, Joannou CL et al (1998) Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 66:3591–3596

    PubMed  CAS  Google Scholar 

  92. Kuusela P, Sakesela O (1990) Binding and activation of plasminogen at the surface of Staphylococcus aureus. Increase in affinity after conversion to the Lys-form of the ligand. Eur J Biochem 193:759–765

    Article  PubMed  CAS  Google Scholar 

  93. Brayman M, Thathiah A, Carson DD (2004) MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol 2:4

    Article  PubMed  Google Scholar 

  94. Kinoshita H, Uchida H, Kawai Y et al (2007) Quantitative evaluation of adhesion of lactobacilli isolated from human intestinal tissues to human colonic mucin using surface plasmon resonance (BIACORE assay). J Appl Microbiol 102:116–123

    Article  PubMed  CAS  Google Scholar 

  95. Kinoshita H, Uchida H, Kawai Y et al (2008) Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 104:1667–1674

    Article  PubMed  CAS  Google Scholar 

  96. Yang SH, Liu ML, Tien CF et al (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3′ ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 16:40

    Article  PubMed  Google Scholar 

  97. Wang RY, Nagy PD (2008) Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNA synthesis. Cell Host Microbe 3:178–187

    Article  PubMed  CAS  Google Scholar 

  98. Wang X, Ahlquist P (2008) Filling a GAP(DH) in asymmetric viral RNA synthesis. Cell Host Microbe 3:124–125

    Article  PubMed  CAS  Google Scholar 

  99. Chu PW, Westaway EG (1985) Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140:68–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seidler, N.W. (2013). GAPDH, as a Virulence Factor. In: GAPDH: Biological Properties and Diversity. Advances in Experimental Medicine and Biology, vol 985. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4716-6_5

Download citation

Publish with us

Policies and ethics