Skip to main content

Basic Biology of GAPDH

  • Chapter
  • First Online:
GAPDH: Biological Properties and Diversity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 985))

Abstract

The GAPDH gene is highly conserved with a promoter that contains several types of regulatory elements, perhaps even in a distal intron. Curiously, the transcription start site shows some ambiguity and there are codon-sharing exons at alternate exon junctions. While there is only one functional gene for GAPDH in humans, the genome is littered with pseudogenes, representing a trove of researchable content. Tissue-specific expression speaks to the glycolytic function of GAPDH; thus, it’s not surprising to see expression increased in cancer cells. Modulation of protein levels becomes an opportunity for intervention. The abundance of GAPDH in the cell provides the rationale (albeit, tenuous) for its use as a loading control. The single paralogous GAPDHS, which is the spermatogenic form of the protein, provides a curious study in cell-type specificity and perhaps intervention (i.e. contraception). And it is no wonder that great biochemists were kept busy for decades unveiling the nuances of GAPDH enzymology. While the active site of the enzyme is well-characterized and the catalytic mechanism is well-described, the role of inter-subunit interactions in catalysis still offers some mysteries, particularly with regards to other emerging enzymatic properties. The GAPDH protein exhibits an intrinsic asymmetry of the subunits, which also may speak to its functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Nowotny P, Holmans P et al (2004) Association of late-onset Alzheimer’s disease with genetic variation in multiple members of the GAPD gene family. Proc Natl Acad Sci USA 101:15688–15693

    PubMed  CAS  Google Scholar 

  2. Ye Z, Connor JR (2000) cDNA cloning by amplification of circularized first strand cDNAs reveals non-IRE-regulated iron-responsive mRNA. Biochem Biophys Res Commun 275:223–227

    PubMed  CAS  Google Scholar 

  3. Tokunaga K, Nakamura Y, Sakata K et al (1987) Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res 47:5616–5619

    PubMed  Google Scholar 

  4. Montgomery KT, Lee E, Miller A et al (2001) A high-resolution map of human chromosome 12. Nature 409:945–946

    PubMed  CAS  Google Scholar 

  5. Scherer SE, Muzny DM, Buhay CJ et al (2006) The finished DNA sequence of human chromosome 12. Nature 440:346–351

    PubMed  CAS  Google Scholar 

  6. Higashimura Y, Nakajima Y, Yamaji R et al (2011) Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch Biochem Biophys 509:1–8

    PubMed  CAS  Google Scholar 

  7. Stone EM, Rothblum KN, Schwartz RJ (1985) Intron-dependent evolution of chicken glyceraldehyde phosphate dehydrogenase gene. Nature 313:498–500

    PubMed  CAS  Google Scholar 

  8. Ercolani L, Florence B, Denaro M et al (1988) Isolation and complete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem 263:15335–15341

    PubMed  CAS  Google Scholar 

  9. Darnell JE Jr (1978) Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202:1257–1260

    PubMed  CAS  Google Scholar 

  10. Rossman M, Liljas A, Branden C et al (1975) Evolutionary and structural relationship among dehydrogenases. In: Boyer PD (ed) The enzymes, vol 11. Academic, Orlando

    Google Scholar 

  11. Harris J, Waters M (1975) Glyceraldehyde-3-phosphate. In: Boyer PD (ed) The enzymes, vol 13. Academic, Orlando

    Google Scholar 

  12. Mezquita J, Pau M, Mezquita C (1998) Several novel transcripts of glyceraldehyde-3-phosphate dehydrogenase expressed in adult chicken testis. J Cell Biochem 71:127–139

    PubMed  CAS  Google Scholar 

  13. Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Krüppel-like transcription factors. Genome Biol 4:206

    PubMed  Google Scholar 

  14. Siegfried Z, Eden S, Mendelsohn M et al (1999) DNA methylation represses transcription in vivo. Nat Genet 22:203–206

    PubMed  CAS  Google Scholar 

  15. Chao CC, Yam WC, Lin-Chao S (1990) Coordinated induction of two unrelated glucose-regulated protein genes by a calcium ionophore: human BiP/GRP78 and GAPDH. Biochem Biophys Res Commun 171:431–438

    PubMed  CAS  Google Scholar 

  16. Nasrin N, Ercolani L, Denaro M et al (1990) An insulin response element in the glyceraldehyde-3-phosphate dehydrogenase gene binds a nuclear protein induced by insulin in cultured cells and by nutritional manipulations in vivo. Proc Natl Acad Sci USA 87:5273–5277

    PubMed  CAS  Google Scholar 

  17. Graven KK, Troxler RF, Kornfeld H et al (1994) Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J Biol Chem 269:24446–24453

    PubMed  CAS  Google Scholar 

  18. Semenza GL, Jiang BH, Leung SW et al (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–32537

    PubMed  CAS  Google Scholar 

  19. Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77

    PubMed  CAS  Google Scholar 

  20. Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    PubMed  CAS  Google Scholar 

  21. Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141:325–334

    PubMed  CAS  Google Scholar 

  22. Jiang BH, Semenza GL, Bauer C et al (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172–C1180

    PubMed  CAS  Google Scholar 

  23. Carter AD, Felber BK, Walling MJ et al (1984) Duplicated heavy metal control sequences of the mouse metallothionein-I gene. Proc Natl Acad Sci USA 81:7392–7396

    PubMed  CAS  Google Scholar 

  24. Lu S, Gu X, Hoestje S et al (2002) Identification of an additional hypoxia responsive element in the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Biochim Biophys Acta 1574:152–156

    PubMed  CAS  Google Scholar 

  25. Claeyssens S, Gangneux C, Brasse-Lagnel C et al (2003) Amino acid control of the human glyceraldehyde 3-phosphate dehydrogenase gene transcription in hepatocyte. Am J Physiol Gastrointest Liver Physiol 285:G840–G849

    PubMed  CAS  Google Scholar 

  26. Graven KK, Yu Q, Pan D et al (1999) Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. Biochim Biophys Acta 1447:208–218

    PubMed  CAS  Google Scholar 

  27. Maxwell PH, Pugh CW, Ratcliffe PJ (1993) Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA 90:2423–2427

    PubMed  CAS  Google Scholar 

  28. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    PubMed  CAS  Google Scholar 

  29. Graven KK, Bellur D, Klahn BD et al (2003) HIF-2alpha regulates glyceraldehyde-3-phosphate dehydrogenase expression in endothelial cells. Biochim Biophys Acta 1626:10–18

    PubMed  CAS  Google Scholar 

  30. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    PubMed  CAS  Google Scholar 

  31. Alexander-Bridges M, Dugast I, Ercolani L et al (1992) Multiple insulin-responsive elements regulate transcription of the GAPDH gene. Adv Enzyme Regul 32:149–159

    PubMed  CAS  Google Scholar 

  32. Bucher P, Trifonov EN (1986) Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res 14:10009–10026

    PubMed  CAS  Google Scholar 

  33. Rolland V, Dugail I, Le Liepvre X et al (1995) Evidence of increased glyceraldehyde-3-phosphate dehydrogenase and fatty acid synthetase promoter activities in transiently transfected adipocytes from genetically obese rats. J Biol Chem 270:1102–1106

    PubMed  CAS  Google Scholar 

  34. Aki T, Yanagisawa S, Akanuma H (1997) Identification and characterization of positive regulatory elements in the human glyceraldehyde 3-phosphate dehydrogenase gene promoter. J Biochem 122:271–278

    PubMed  CAS  Google Scholar 

  35. Struhl K (1985) Naturally occurring poly (dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci USA 82:8419–8423

    PubMed  CAS  Google Scholar 

  36. Weiher H, König M, Gruss P (1983) Multiple point mutations affecting the simian virus 40 enhancer. Science 219:626–631

    PubMed  CAS  Google Scholar 

  37. Krause U, Bertrand L, Maisin L et al (2002) Signaling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur J Biochem 269:3742–3750

    PubMed  CAS  Google Scholar 

  38. Corbin IR, Gong Y, Zhang M et al (2002) Proliferative and nutritional dependent regulation of glyceraldehyde-3-phosphate dehydrogenase expression in the rat liver. Cell Prolif 35:173–182

    PubMed  CAS  Google Scholar 

  39. Gong Y, Cui L, Minuk GY (1996) Comparison of glyceraldehyde-3-phosphate dehydrogenase and 28s-ribosomal RNA gene expression in human hepatocellular carcinoma. Hepatology 23:734–737

    PubMed  CAS  Google Scholar 

  40. Banerjee K, Mohr L, Wands JR et al (1998) Ethanol inhibition of insulin signaling in hepatocellular carcinoma cells. Alcohol Clin Exp Res 22:2093–2101

    PubMed  CAS  Google Scholar 

  41. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    PubMed  CAS  Google Scholar 

  42. Borel MJ, Williams PE, Jabbour K et al (1998) Parenteral glutamine infusion alters insulin-mediated glucose metabolism. J Parenter Enteral Nutr 22:280–285

    CAS  Google Scholar 

  43. Welch JE, Brown PL, O’Brien DA et al (2000) Human glyceraldehydes-3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J Androl 21:328–338

    PubMed  CAS  Google Scholar 

  44. Westhoff D, Kamp G (1997) Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J Cell Sci 110:1821–1829

    PubMed  CAS  Google Scholar 

  45. Bunch DO, Welch JE, Magyar PL et al (1998) Glyceraldehyde 3-phosphate dehydrogenase-S protein distribution during mouse spermatogenesis. Biol Reprod 58:834–841

    PubMed  CAS  Google Scholar 

  46. Yang P, Diener DR, Rosenbaum JL et al (2001) Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes. J Cell Biol 153:1315–1326

    PubMed  CAS  Google Scholar 

  47. Eddy EM, Toshimori K, O’Brien DA (2003) Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 61:103–115

    PubMed  CAS  Google Scholar 

  48. Nakamura N, Mori C, Eddy EM (2010) Molecular complex of three testis-specific isozymes associated with the mouse sperm fibrous sheath: hexokinase 1, phosphofructokinase M, and glutathione S-transferase mu class 5. Biol Reprod 82:504–515

    PubMed  CAS  Google Scholar 

  49. Miki K, Qu W, Goulding EH et al (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA 101:16501–16506

    PubMed  CAS  Google Scholar 

  50. Mighell AJ, Smith NR, Robinson PA et al (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114

    PubMed  CAS  Google Scholar 

  51. Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogene. Nat Genet 24:363–367

    PubMed  CAS  Google Scholar 

  52. Gonçalves I, Duret L, Mouchiroud D (2000) Nature and structure of human genes that generate retropseudogenes. Genome Res 10:672–678

    PubMed  Google Scholar 

  53. Garcia-Meunier P, Etienne-Julan M, Fort P et al (1993) Concerted evolution in the GAPDH family of retrotransposed pseudogenes. Mamm Genome 4:695–703

    PubMed  CAS  Google Scholar 

  54. Liu YJ, Zheng D, Balasubramanian S et al (2009) Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genomics 10:480

    PubMed  Google Scholar 

  55. McDonell L, Drouin G (2012) The abundance of processed pseudogenes derived from glycolytic genes is correlated with their expression level. Genome 55:147–151

    PubMed  CAS  Google Scholar 

  56. Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151

    PubMed  CAS  Google Scholar 

  57. Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661

    PubMed  CAS  Google Scholar 

  58. Tso JY, Sun XH, Kao TH et al (1985) Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res 13:2485–2502

    PubMed  CAS  Google Scholar 

  59. Arcari P, Martinelli R, Salvatore F (1984) The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species. Nucleic Acids Res 12:9179–9189

    PubMed  CAS  Google Scholar 

  60. Piechaczyk M, Blanchard JM, Marty L et al (1984) Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Res 12:6951–6963

    PubMed  CAS  Google Scholar 

  61. Nygard AB, Jørgensen CB, Cirera S et al (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8:67

    PubMed  Google Scholar 

  62. Epner DE, Partin AW, Schalken JA et al (1993) Association of glyceraldehyde-3-phosphate dehydrogenase expression with cell motility and metastatic potential of rat prostatic adenocarcinoma. Cancer Res 53:1995–1997

    PubMed  CAS  Google Scholar 

  63. Révillion F, Pawlowski V, Hornez L et al (2000) Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer 36:1038–1042

    PubMed  Google Scholar 

  64. Said HM, Hagemann C, Stojic J et al (2007) GAPDH is not regulated in human glioblastoma under hypoxic conditions. BMC Mol Biol 8:55

    PubMed  Google Scholar 

  65. Ganapathy-Kanniappan S, Kunjithapatham R, Torbenson MS et al (2012) Human hepatocellular carcinoma in a mouse model: assessment of tumor response to percutaneous ablation by using glyceraldehyde-3-phosphate dehydrogenase antagonists. Radiology 262:834–845

    PubMed  Google Scholar 

  66. Warburg OH (1930) The metabolism of tumors. Constable, London

    Google Scholar 

  67. McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102

    PubMed  Google Scholar 

  68. Sabath DE, Broome HE, Prystowsky MB (1990) Glyceraldehyde-3-phosphate dehydrogenase mRNA is a major interleukin 2-induced transcript in a cloned T-helper lymphocyte. Gene 91:185–191

    PubMed  CAS  Google Scholar 

  69. Krebs EG, Rafter GW, Junge JM (1953) Yeast glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 200:479–492

    PubMed  CAS  Google Scholar 

  70. Vinnakota KC, Bassingthwaighte JB (2004) Myocardial density and composition: a basis for calculating intracellular metabolite concentrations. Am J Physiol Heart Circ Physiol 286:H1742–H1749

    PubMed  CAS  Google Scholar 

  71. Varga EG, Titchener-Hooker NJ, Dunnill P (1998) Use of scale-down methods to rapidly apply natural yeast homogenisation models to a recombinant strain. Bioprocess Biosyst Eng 19:373–380

    CAS  Google Scholar 

  72. Lineweaver H (1938) Physical characteristics of cells of azotobacter, rhizobium, and saccharomyces. J Bacteriol 35:501–509

    PubMed  CAS  Google Scholar 

  73. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    PubMed  CAS  Google Scholar 

  74. Cori GT, Slein MW, Cori CF (1945) Isolation and crystallization of D-glyceraldehyde 3-phosphate dehydrogenase from rabbit muscle. J Biol Chem 159:565–566

    CAS  Google Scholar 

  75. Hohorst HL, Reim M, Bartels H (1962) Equilibria of two-partner reactions of energy supplying metabolism in muscle. Biochem Biophys Res Commun 7:137–141

    PubMed  CAS  Google Scholar 

  76. Fahien LA (1966) A study of the reaction of glyceraldehyde with glyceraldehyde 3-phosphate dehydrogenase. J Biol Chem 241:4115–4123

    PubMed  CAS  Google Scholar 

  77. Czok R, Buecher T (1960) Crystallized enzymes from the myogen of rabbit skeletal muscle. Adv Protein Chem 15:315–415

    PubMed  CAS  Google Scholar 

  78. Cori GT, Slein MW, Cori CF (1948) Crystalline D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. J Biol Chem 173:605–618

    PubMed  CAS  Google Scholar 

  79. Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432:159–184

    PubMed  CAS  Google Scholar 

  80. Durrieu C, Bernier-Valentin F, Rousset B (1987) Binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules. Mol Cell Biochem 74:55–65

    PubMed  CAS  Google Scholar 

  81. Dice JF, Goldberg AL (1975) A statistical analysis of the relationship between degradative rates and molecular weights of proteins. Arch Biochem Biophys 170:213–219

    PubMed  CAS  Google Scholar 

  82. Simpson MV, Velick SF (1954) The synthesis of aldolase and glyceraldehyde-3-phosphate dehydrogenase in the rabbit. J Biol Chem 208:61–71

    PubMed  CAS  Google Scholar 

  83. Schapira G, Kruh J, Dreyfus JC et al (1960) The molecular turnover of muscle aldolase. J Biol Chem 235:1738–1741

    PubMed  CAS  Google Scholar 

  84. Kuehl L, Sumsion EN (1970) Turnover of several glycolytic enzymes in rat liver. J Biol Chem 245:6616–6623

    PubMed  CAS  Google Scholar 

  85. Shonk CE, Koven BJ, Majima H et al (1964) Enzyme patterns in human tissues. II. Glycolytic enzyme patterns in nonmalignant human tissues. Cancer Res 24:722–731

    PubMed  CAS  Google Scholar 

  86. Isenman LD, Dice JF (1989) Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation. J Biol Chem 264:21591–21596

    PubMed  CAS  Google Scholar 

  87. Cuervo AM, Terlecky SR, Dice JF et al (1994) Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J Biol Chem 269:26374–26380

    PubMed  CAS  Google Scholar 

  88. Shen W, Brown NS, Finn PF et al (2006) Akt and mammalian target of rapamycin regulate separate systems of proteolysis in renal tubular cells. J Am Soc Nephrol 17:2414–2423

    PubMed  CAS  Google Scholar 

  89. Tsuchiya Y, Yamaguchi M, Chikuma T et al (2005) Degradation of glyceraldehyde-3-phosphate dehydrogenase triggered by 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal. Arch Biochem Biophys 438:217–222

    PubMed  CAS  Google Scholar 

  90. Tsuchiya Y, Okada G, Kobayashi S et al (2011) 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G in rat neutrophils. Oxid Med Cell Longev 2011:213686

    PubMed  Google Scholar 

  91. Yamaguchi M, Tsuchiya Y, Chikuma T et al (2002) Degradation of glyceraldehyde-3-phosphate dehydrogenase induced by acetylleucine chloromethyl ketone in U937 cells. Biochem Pharmacol 63:1857–1862

    PubMed  CAS  Google Scholar 

  92. Habenicht A (1997) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase: biochemistry, structure, occurrence and evolution. Biol Chem 378:1413–1419

    PubMed  CAS  Google Scholar 

  93. Trentham DR (1968) Aspects of the chemistry of D-glyceraldehyde 3-phosphate dehydrogenase. Biochem J 109:603–612

    PubMed  CAS  Google Scholar 

  94. Moras D, Olsen KW, Sabesan MN et al (1975) Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 250:9137–9162

    PubMed  CAS  Google Scholar 

  95. Segal HL, Boyer PD (1953) The role of sulfhydryl groups in the activity of D-glyceraldehyde 3-phosphate dehydrogenase. J Biol Chem 204:265–281

    PubMed  CAS  Google Scholar 

  96. Corbier C, Michels S, Wonacott AJ (1994) Characterization of the two anion-recognition sites of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus by site-directed mutagenesis and chemical modification. Biochemistry 33:3260–3265

    PubMed  CAS  Google Scholar 

  97. Duggleby RG, Dennis DT (1974) Nicotinamide adenine dinucleotide-specific glyceraldehyde 3-phosphate dehydrogenase from Pisum sativum. J Biol Chem 249:167–174

    PubMed  CAS  Google Scholar 

  98. Harrigan PJ, Trentham DR (1973) Kinetic studies of the acylation of pig muscle D-glyceraldehyde 3-phosphate dehydrogenase by 1,3-diphosphoglycerate and of proton uptake and release in the overall enzyme mechanism. Biochem J 135:695–703

    PubMed  CAS  Google Scholar 

  99. Nagradova NK (2001) Study of the properties of phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase. Biochemistry (Mosc) 66:1323–1334

    Google Scholar 

  100. Skarzynski T, Moody PC, Wonacott AJ (1987) Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution. J Mol Biol 193:171–187

    PubMed  CAS  Google Scholar 

  101. Yun M, Park CG, Kim JY et al (2000) Structural analysis of glyceraldehydes 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry 39:10702–10710

    PubMed  CAS  Google Scholar 

  102. Krimsky I, Racker E (1958) Approaches to the mechanism of action of double-headed enzymes. Fed Proc 17:1135–1141

    PubMed  CAS  Google Scholar 

  103. Smith TE (1966) Studies on the mechanism of action of glyceraldehyde 3-phosphate dehydrogenase. Absorbance and fluorescence properties of reduced nicotinamide-adenine dinucleotide complexes with glyceraldehyde 3-phosphate dehydrogenase. Biochemistry 5:2919–2926

    PubMed  CAS  Google Scholar 

  104. Furfine CS, Velick SF (1965) The acyl-enzyme intermediate and the kinetic mechanism of the glyceraldehyde 3-phosphate dehydrogenase reaction. J Biol Chem 240:844–855

    PubMed  CAS  Google Scholar 

  105. Orsi BA, Cleland WW (1972) Inhibition and kinetic mechanism of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 11:102–109

    PubMed  CAS  Google Scholar 

  106. Nygaard AP, Sumner JB (1952) D-Glyceraldehyde 3-phosphate dehydrogenase; a comparison with liver aldehyde dehydrogenase. Arch Biochem Biophys 39:119–128

    PubMed  CAS  Google Scholar 

  107. Park JH, Agnello CF, Mathew E (1966) S-N transfer and dual acetylation in the S-acetylation and N-acetylation of 3-phosphoglyceraldehyde dehydrogenase by substrates. J Biol Chem 241:769–771

    PubMed  CAS  Google Scholar 

  108. Krimsky I, Racker E (1955) Acyl derivatives of glyceraldehyde-3-phosphate dehydrogenase. Science 122:319–321

    PubMed  CAS  Google Scholar 

  109. Anderson BM, Ciotti CJ, Kaplan NO (1959) Chemical properties of 3-substituted pyridine analogues of diphosphopyridine nucleotide. J Biol Chem 234:1219–1225

    PubMed  CAS  Google Scholar 

  110. Eby D, Kirtley ME (1971) Interaction of nicotinamide-adenine dinucleotide and its analogs with glyceraldehyde 3-phosphate dehydrogenase. Biochemistry 10:2677–2682

    PubMed  CAS  Google Scholar 

  111. Nagradova NK, Asryants RA, Ivanov MV (1971) Interaction of 1-anilino-8-naphthalene sulfonate with yeast glyceraldehyde-3-phosphate dehydrogenase. Experientia 27:1169–1170

    PubMed  CAS  Google Scholar 

  112. Yang ST, Deal WC Jr (1969) Metabolic control and structure of glycolytic enzymes. VI. Competitive inhibition of yeast glyceraldehyde 3-phosphate dehydrogenase by cyclic adenosine monophosphate, adenosine triphosphate, and other adenine-containing compounds. Biochemistry 8:2806–2813

    PubMed  CAS  Google Scholar 

  113. Peczon BD, Spivey HO (1972) Catalytic sites in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Their number and their kinetic and spectral properties. Biochemistry 11:2209–2217

    PubMed  CAS  Google Scholar 

  114. Trentham DR (1971) Rate-determining processes and the number of simultaneously active sties of D-glyceraldehyde 3-phosphate dehydrogenase. Biochem J 122:71–77

    PubMed  CAS  Google Scholar 

  115. de Vijlder JJ, Hilvers AG, Van Lis JM et al (1969) Function and role of NAD+ in mechanism of action of rabbit-muscle glyceraldehydephosphate dehydrogenase. Biochim Biophys Acta 191:221–228

    PubMed  Google Scholar 

  116. Skarzyński T, Wonacott AJ (1988) Coenzyme-induced conformational changes in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. J Mol Biol 203:1097–1118

    PubMed  Google Scholar 

  117. Buehner M, Ford GC, Olsen KW et al (1974) Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol 90:25–49

    PubMed  CAS  Google Scholar 

  118. Biesecker G, Harris JI, Thierry JC et al (1977) Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. Nature 266:328–333

    PubMed  CAS  Google Scholar 

  119. Frayne J, Taylor A, Cameron G et al (2009) Structure of insoluble rat sperm glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via heterotetramer formation with Escherichia coli GAPDH reveals target for contraceptive design. J Biol Chem 284:22703–22712

    PubMed  CAS  Google Scholar 

  120. Duée E, Olivier-Deyris L, Fanchon E et al (1996) Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. J Mol Biol 257:814–838

    PubMed  Google Scholar 

  121. Jenkins JL, Tanner JJ (2006) High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 62:290–301

    PubMed  Google Scholar 

  122. Song SY, Xu YB, Lin ZJ et al (1999) Structure of active site carboxymethylated D-glyceraldehyde-3-phosphate dehydrogenase from Palinurus versicolor. J Mol Biol 287:719–725

    Google Scholar 

  123. Seydoux F, Bernhard S, Pfenninger O et al (1973) Preparation and active-site specific properties of sturgeon muscle glyceraldehyde-3-phoshate dehydrogenase. Biochemistry 12:4290–4300

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seidler, N.W. (2013). Basic Biology of GAPDH. In: GAPDH: Biological Properties and Diversity. Advances in Experimental Medicine and Biology, vol 985. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4716-6_1

Download citation

Publish with us

Policies and ethics