Skip to main content

Effect of Chemotherapy on the Tumor Microenvironment and Anti-tumor Immunity

  • Chapter
  • First Online:
Tumor Ablation

Part of the book series: The Tumor Microenvironment ((TTME,volume 5))

Abstract

An accumulating body of evidence demonstrates that conventional chemotherapy and targeted therapies result in cell death that can elicit an antitumor immune response. A number of distinct biochemical properties of chemotherapy-induced cell death have an important role in determining its immunogenicity by triggering ‘danger signals’ that can elicit a specific antitumor immune response. Chemotherapy can also exert other immune modulatory effects on a number of immune cells including dendritic cells, myeloid-derived suppressor cells, CD8 + T cells, and regulatory T cells. An understanding of the interactions between cytotoxic therapies and the immune system and the tumor microenvironment is crucial for the rational development of combination treatments of immunotherapy with conventional or targeted therapies to achieve a synergistic antitumor effect and improved treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weinberg RA (2008) Coevolution in the tumor microenvironment. Nat Genet 40:494–495

    PubMed  CAS  Google Scholar 

  2. Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347:1593–1603

    PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  4. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumor cells. Nat Rev Cancer 4:592–603

    PubMed  CAS  Google Scholar 

  5. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  6. Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18:1441–1449

    PubMed  CAS  Google Scholar 

  7. Schutze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9:655–662

    PubMed  Google Scholar 

  8. Wajant H (2002) The fas signaling pathway: more than a paradigm. Science 296:1635–1636

    PubMed  CAS  Google Scholar 

  9. Kischkel FC, Hellbardt S, Behrmann I et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    PubMed  CAS  Google Scholar 

  10. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    PubMed  CAS  Google Scholar 

  11. Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–20

    PubMed  CAS  Google Scholar 

  12. Friesen C, Herr I, Krammer PH et al (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med 2:574–577

    PubMed  CAS  Google Scholar 

  13. Fulda S, Sieverts H, Friesen C et al (1997) The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57:3823–3829

    PubMed  CAS  Google Scholar 

  14. Muller M, Strand S, Hug H et al (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413

    PubMed  CAS  Google Scholar 

  15. Fulda S, Los M, Friesen C et al (1998) Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int J Cancer 76:105–114

    PubMed  CAS  Google Scholar 

  16. Kidd JF, Pilkington MF, Schell MJ et al (2002) Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 277:6504–10

    PubMed  CAS  Google Scholar 

  17. Sax JK, Fei P, Murphy ME et al (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4:842–849

    PubMed  CAS  Google Scholar 

  18. Sunters A, Fernandez de Mattos S, Stahl M et al (2003) FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278:49795–49805

    PubMed  CAS  Google Scholar 

  19. Henkels KM, Turchi JJ (1999) Cisplatin-induced apoptosis proceeds by caspase-3-dependent and independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res 59:3077–3083

    PubMed  CAS  Google Scholar 

  20. Gourdier I, Crabbe L, Andreau K et al (2004) Oxaliplatin-induced mitochondrial apoptotic response of colon carcinoma cells does not require nuclear DNA. Oncogene 23:7449–7457

    PubMed  CAS  Google Scholar 

  21. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    PubMed  CAS  Google Scholar 

  22. Arango D, Wilson AJ, Shi Q et al (2004) Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer 91:1931–1946

    PubMed  CAS  Google Scholar 

  23. Backus HHJ, Dukers DF, van Groeningen CJ et al (2001) 5-Fluorouracil induced Fas upregulation associated with apoptosis in liver metastases of colorectal cancer patients. Ann Oncol 12:209–216

    PubMed  CAS  Google Scholar 

  24. Huang P, Plunkett W (1995) Induction of apoptosis by gemcitabine. Semin Oncol 22:19–25

    PubMed  Google Scholar 

  25. Nowak AK, Lake RA, Marzo AL et al (2003) Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913

    PubMed  CAS  Google Scholar 

  26. Kaufmann SH (1989) Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 49:5870–5878

    PubMed  CAS  Google Scholar 

  27. Skladanowski A, Konopa J (1993) Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumour cells. Biochem Pharmacol 46:375–382

    PubMed  CAS  Google Scholar 

  28. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    PubMed  CAS  Google Scholar 

  29. Pytel D, Wysocki T, Majsterek I (2006) Comparative study of DNA damage, cell cycle and apoptosis in human K562 and CCRF-CEM leukemia cells: role of BCR/ABL in therapeutic resistance. Comp Biochem Physiol C Toxicol Pharmacol 144:85–92

    PubMed  Google Scholar 

  30. Bhalla K, Ibrado AM, Tourkina E et al (1993) High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells. Blood 82:3133–3140

    PubMed  CAS  Google Scholar 

  31. Guerriero JL, Ditsworth D, Fan Y et al (2008) Chemotherapy induces tumor clearance independent of apoptosis. Cancer Res 68:9595–9600

    PubMed  CAS  Google Scholar 

  32. Barry MA, Behnke CA, Eastman A (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40:2353–2362

    PubMed  CAS  Google Scholar 

  33. Bhalla K, Ibrado AM, Tourkina E et al (1993) Taxol induces internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia 7:563–568

    PubMed  CAS  Google Scholar 

  34. Roncuzzi L, Marti G, Baiocchi D et al (2006) Effect of Vinorelbine on cell growth and apoptosis induction in human osteosarcoma in vitro. Oncol Rep 15:73–77

    PubMed  CAS  Google Scholar 

  35. Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    PubMed  CAS  Google Scholar 

  36. Hitomi J, Christofferson DE, Ng A et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    PubMed  CAS  Google Scholar 

  37. Vandenabeele P, Galluzzi L, Vanden Berghe T et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    PubMed  CAS  Google Scholar 

  38. Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    PubMed  CAS  Google Scholar 

  39. Zong WX, Ditsworth D, Bauer DE et al (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    PubMed  CAS  Google Scholar 

  40. Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    PubMed  CAS  Google Scholar 

  41. Tesniere A, Panaretakis T, Kepp O et al (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15:3–12

    PubMed  CAS  Google Scholar 

  42. Michaud M, Martins I, Sukkurwala AQ et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577

    PubMed  CAS  Google Scholar 

  43. Galluzzi L, Maiuri MC, Vitale I et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    PubMed  CAS  Google Scholar 

  44. Yamada HY, Rao CV (2010) Genes that modulate the sensitivity for anti-microtubule drug-mediated chemotherapy. Curr Cancer Drug Targets 10:623–633

    PubMed  CAS  Google Scholar 

  45. Eom YW, Kim MA, Park SS et al (2005) Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24:4765–4777

    PubMed  CAS  Google Scholar 

  46. Vitale I, Galluzzi L, Castedo M et al (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12:385–392

    PubMed  CAS  Google Scholar 

  47. Gascoigne KE, Taylor SS (2008) Cancer cells display profound intra- and inter-line variation following prolonged exposure to antimitotic drugs. Cancer Cell 14:111–122

    PubMed  CAS  Google Scholar 

  48. Sharpless NE, Bardeesy N, Lee KH et al (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91

    PubMed  CAS  Google Scholar 

  49. Kamijo T, Bodner S, van de Kamp E et al (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59:2217–2222

    PubMed  CAS  Google Scholar 

  50. Schmitt CA, Fridman JS, Yang M et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    PubMed  CAS  Google Scholar 

  51. Green DR, Ferguson T, Zitvogel L et al (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363

    PubMed  CAS  Google Scholar 

  52. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    PubMed  CAS  Google Scholar 

  53. Qu X (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    PubMed  CAS  Google Scholar 

  54. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  55. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    PubMed  CAS  Google Scholar 

  56. Burnet M (1957) Cancer: a biological approach. I. The processes of control. Br Med J 1:779–786

    PubMed  CAS  Google Scholar 

  57. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    PubMed  CAS  Google Scholar 

  58. Matzinger P, Kamala T (2011) Tissue-based class control: the other side of tolerance. Nat Rev Immunol 11:221–230

    PubMed  CAS  Google Scholar 

  59. Balachandran VP, Cavnar MJ, Zeng S et al (2011) Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med 17:1094–1100

    PubMed  CAS  Google Scholar 

  60. Casares N, Pequignot MO, Tesniere A et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–701

    PubMed  CAS  Google Scholar 

  61. Nowak AK, Robinson BW, Lake RA (2002) Gemcitabine exerts a selective effect on the humoral immune response: implications for combination chemo-immunotherapy. Cancer Res 62:2353–2358

    PubMed  CAS  Google Scholar 

  62. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21:233–240

    PubMed  CAS  Google Scholar 

  63. Collins RH Jr, Shpilberg O, Drobyski WR et al (1997) Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15:433–444

    PubMed  Google Scholar 

  64. Horowitz MM, Gale RP, Sondel PM et al (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555–562

    PubMed  CAS  Google Scholar 

  65. Fadok VA (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-b, PGE2, and PAF. J Clin Invest 101:890–898

    PubMed  CAS  Google Scholar 

  66. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788

    PubMed  CAS  Google Scholar 

  67. Zitvogel L (2004) Immune response against dying tumor cells. Adv Immunol 84:131–179

    PubMed  CAS  Google Scholar 

  68. Blachere NE, Darnell RB, Albert ML (2005) Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol 3:e185

    Google Scholar 

  69. Tesniere A (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20:504–511

    PubMed  CAS  Google Scholar 

  70. Nowak AK, Robinson BWS, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63:4490–4496

    PubMed  CAS  Google Scholar 

  71. Gardai SJ, McPhillips KA, Frasch SC et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    PubMed  CAS  Google Scholar 

  72. Panaretakis T (2008) The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 15:1499–1509

    PubMed  CAS  Google Scholar 

  73. Gardai SJ, McPhillips KA, Frasch SC et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    PubMed  CAS  Google Scholar 

  74. Franz S, Herrmann K, Furnrohr BG et al (2007) After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ 14:733–742

    PubMed  CAS  Google Scholar 

  75. Saito K, Dai Y, Ohtsuka K (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310:229–236

    PubMed  CAS  Google Scholar 

  76. Schmitt E, Gehrmann M, Brunet M et al (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15–27

    PubMed  CAS  Google Scholar 

  77. Vargas-Roig LM, Gago FE, Tello O et al (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79:468–475

    PubMed  CAS  Google Scholar 

  78. Yano M, Naito Z, Tanaka S et al (1996) Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res 87:908–915

    PubMed  CAS  Google Scholar 

  79. Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8 + T cells. Nat Immunol 6:593–599

    PubMed  CAS  Google Scholar 

  80. Murshid A, Gong J, Calderwood SK (2008) Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Rev Vaccines 7:1019–1030

    PubMed  CAS  Google Scholar 

  81. Binder RJ, Blachere NE, Srivastava PK (2001) Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 276:17163–17171

    PubMed  CAS  Google Scholar 

  82. Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol 152:5398–5403

    PubMed  CAS  Google Scholar 

  83. Doody AD, Kovalchin JT, Mihalyo MA et al (2004) Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8 + T cell effector function. J Immunol 172:6087–6092

    PubMed  CAS  Google Scholar 

  84. Spisek R, Charalambous A, Mazumder A et al (2007) Bortezomib enhances dendritic cell (DC)–mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109:4839–4845

    PubMed  CAS  Google Scholar 

  85. Belli F, Testori A, Rivoltini L et al (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180

    PubMed  CAS  Google Scholar 

  86. Mazzaferro V, Coppa J, Carrabba MG et al (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245

    PubMed  CAS  Google Scholar 

  87. Van Der Most RG, Currie AJ, Robinson BW et al (2008) Decoding dangerous death: how cytotoxic chemotherapy invokes inflammation, immunity or nothing at all. Cell Death Differ 15:13–20

    PubMed  CAS  Google Scholar 

  88. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    PubMed  CAS  Google Scholar 

  89. Ditsworth D, Zong WX, Thompson CB (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 282:17845–17854

    PubMed  CAS  Google Scholar 

  90. Bianchi ME (2009) HMGB1 loves company. J Leukoc Biol 86:573–576

    PubMed  CAS  Google Scholar 

  91. Ellerman JE, Brown CK, de Vera M et al (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13:2836–2848

    PubMed  CAS  Google Scholar 

  92. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    PubMed  CAS  Google Scholar 

  93. Dumitriu IE, Baruah P, Bianchi ME et al (2005) Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol 35:2184–2190

    PubMed  CAS  Google Scholar 

  94. Park JS, Gamboni-Robertson F, He Q et al (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290:C917–924

    PubMed  CAS  Google Scholar 

  95. Tian J, Avalos AM, Mao SY et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    PubMed  CAS  Google Scholar 

  96. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10–22

    PubMed  CAS  Google Scholar 

  97. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    PubMed  CAS  Google Scholar 

  98. Martins I, Tesniere A, Kepp O et al (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8:3723–3728

    PubMed  CAS  Google Scholar 

  99. Zitvogel L, Apetoh L, Ghiringhelli F et al (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    PubMed  CAS  Google Scholar 

  100. Weinblatt ME, Coblyn JS, Fox DA et al (1985) Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 312:818–822

    PubMed  CAS  Google Scholar 

  101. Weiner HL, Cohen JA (2002) Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Mult Scler 8:142–154

    PubMed  CAS  Google Scholar 

  102. Tolaney SM, Najita J, Winer EP et al (2008) Lymphopenia associated with adjuvant anthracycline/ taxane regimens. Clin Breast Cancer 8:352–356

    PubMed  CAS  Google Scholar 

  103. Seggewiss R, Lore K, Greiner E et al (2005) Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 105:2473–2479

    PubMed  CAS  Google Scholar 

  104. Mumprecht S, Matter M, Pavelic V et al (2006) Imatinib mesylate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections. Blood 108:3406–3413

    PubMed  CAS  Google Scholar 

  105. Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy: a practical partnership. Nat Rev Cancer 5:397–405

    PubMed  CAS  Google Scholar 

  106. Odili JL, Geoffrey T (1971) Transience of immune responses to tumour antigens in man. BMJ 4:584

    PubMed  CAS  Google Scholar 

  107. Srivastava N, Srivastava PK (2009) Modeling the repertoire of true tumor-specific MHC I epitopes in a human tumor. PLoS ONE 4:e6094

    Google Scholar 

  108. Weir BA, Woo MS, Getz G et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    PubMed  CAS  Google Scholar 

  109. Tomlinson I, Sasieni P, Bodmer W (2002) How many mutations in a cancer? Am J Pathol 160:755–758

    PubMed  Google Scholar 

  110. Schietinger A, Philip M, Schreiber H (2008) Specificity in cancer immunotherapy. Semin Immunol 20:276–285

    PubMed  CAS  Google Scholar 

  111. Cloosen S, Arnold J, Thio M et al (2007) Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res 67:3919–3926

    PubMed  CAS  Google Scholar 

  112. Ferte C, Andre F, Soria JC (2010) Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 7:367–380

    PubMed  CAS  Google Scholar 

  113. Wistuba II, Gelovani JG, Jacoby JJ et al (2011) Methodological and practical challenges for personalized cancer therapies. Nat Rev Clin Oncol 8:135–141

    PubMed  CAS  Google Scholar 

  114. Higgins MJ, Baselga J (2011) Targeted therapies for breast cancer. J Clin Invest 121:3797–3803

    PubMed  CAS  Google Scholar 

  115. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    PubMed  CAS  Google Scholar 

  116. Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    PubMed  CAS  Google Scholar 

  117. Arkenau HT, Kefford R, Long GV (2011) Targeting BRAF for patients with melanoma. Br J Cancer 104:392–398

    PubMed  CAS  Google Scholar 

  118. Kurts C, Robinson BWS, Knolle PA (2010) Cross-priming in health and disease. Nat Rev Immunol 10:403–414

    PubMed  CAS  Google Scholar 

  119. Stumbles PA (2004) Cutting edge: tumor-specific CTL are constitutively cross-armed in draining lymph nodes and transiently disseminate to mediate tumor regression following systemic CD40 activation. J Immunol 173:5923–5928

    PubMed  CAS  Google Scholar 

  120. Muranski P (2006) Increased intensity lymphodepletion and adoptive immunotherapy—how far can we go? Nature Clin Pract Oncol 3:668–681

    CAS  Google Scholar 

  121. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074

    PubMed  CAS  Google Scholar 

  122. Dudley ME, Wunderlich JR, Yang JC et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    PubMed  CAS  Google Scholar 

  123. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    PubMed  CAS  Google Scholar 

  124. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol 4:330–336

    PubMed  CAS  Google Scholar 

  125. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    PubMed  CAS  Google Scholar 

  126. Kawai O, Ishii G, Kubota K et al (2008) Predominant infiltration of macrophages and CD8 +  T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113:1387–1395

    PubMed  CAS  Google Scholar 

  127. Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    PubMed  CAS  Google Scholar 

  128. Schumacher K, Haensch W, Roefzaad C et al (2001) Prognostic significance of activated CD8 +  T cell infiltrations within esophageal carcinomas. Cancer Res 61:3932–3936

    PubMed  CAS  Google Scholar 

  129. Shibuya TY, Nugyen N, McLaren CE et al (2002) Clinical significance of poor CD3 response in head and neck cancer. Clin Cancer Res 8:745–751

    PubMed  CAS  Google Scholar 

  130. Pages F (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27:5944–5951

    PubMed  CAS  Google Scholar 

  131. House AK, Watt AG (1979) Survival and the immune response in patients with carcinoma of the colorectum. Gut 20:868–874

    PubMed  CAS  Google Scholar 

  132. Naito Y, Saito K, Shiiba K et al (1998) CD8 + T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494

    PubMed  CAS  Google Scholar 

  133. Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666

    PubMed  CAS  Google Scholar 

  134. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    PubMed  CAS  Google Scholar 

  135. Fu J, Xu D, Liu Z et al (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterol 132:2328–2339

    Google Scholar 

  136. Hiraoka N, Onozato K, Kosuge T et al (2006) Prevalence of FOXP3 + regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    PubMed  CAS  Google Scholar 

  137. Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3 + T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    PubMed  Google Scholar 

  138. Carreras J, Lopez-Guillermo A, Fox BC et al (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964

    PubMed  CAS  Google Scholar 

  139. Badoual C, Hans S, Rodriguez J et al (2006) Prognostic value of tumor-infiltrating CD4 + T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472

    PubMed  CAS  Google Scholar 

  140. Komatsu N, Mariotti-Ferrandiz ME, Wang Y et al (2009) Heterogeneity of natural Foxp3 + T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci U S A 106:1903–1908

    PubMed  CAS  Google Scholar 

  141. Badoual C, Hans S, Fridman WH et al (2009) Revisiting the prognostic value of regulatory T cells in patients with cancer. J Clin Oncol 27:e5–6

    PubMed  Google Scholar 

  142. Pages F, Galon J, Dieu-Nosjean MC et al (2009) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102

    PubMed  Google Scholar 

  143. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4 + CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    PubMed  CAS  Google Scholar 

  144. Ercolini AM, Ladle BH, Manning EA et al (2005) Recruitment of latent pools of high-avidity CD8 +  T cells to the antitumor immune response. J Exp Med 201:1591–1602

    PubMed  CAS  Google Scholar 

  145. Banissi C, Ghiringhelli F, Chen L et al (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634

    PubMed  CAS  Google Scholar 

  146. Hermans IF, Chong TW, Palmowski MJ et al (2003) Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res 63:8408–8413

    PubMed  CAS  Google Scholar 

  147. Chen CA, Ho CM, Chang MC et al (2010) Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumor angiogenesis. Mol Ther 18:1233–1243

    PubMed  CAS  Google Scholar 

  148. Ghiringhelli F, Menard C, Puig PE et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4 + CD25 + regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    PubMed  CAS  Google Scholar 

  149. Zhang L, Dermawan K, Jin M et al (2008) Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 129:219–229

    PubMed  CAS  Google Scholar 

  150. Correale P, Cusi MG, Tsang KY et al (2005) Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 23:8950–8958

    PubMed  CAS  Google Scholar 

  151. Correale P, Tagliaferri P, Fioravanti A et al (2008) Immunity feedback and clinical outcome in colon cancer patients undergoing chemoimmunotherapy with gemcitabine + FOLFOX followed by subcutaneous granulocyte macrophage colony-stimulating factor and aldesleukin (GOLFIG-1 Trial). Clin Cancer Res 14:4192–4199

    PubMed  CAS  Google Scholar 

  152. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    PubMed  CAS  Google Scholar 

  153. Diaz-Montero CM, Salem ML, Nishimura MI et al (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    PubMed  CAS  Google Scholar 

  154. Le HK, Graham L, Cha E et al (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9:900–909

    PubMed  CAS  Google Scholar 

  155. Suzuki E, Kapoor V, Jassar AS et al (2005) Gemcitabine selectively eliminates splenic Gr-1 + /CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    PubMed  CAS  Google Scholar 

  156. Gasser S, Orsulic S, Brown EJ et al (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    PubMed  CAS  Google Scholar 

  157. Xue W (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    PubMed  CAS  Google Scholar 

  158. Ashwell JD (1988) Are B lymphocytes the principal antigen-presenting cells in vivo? J Immunol 140:3697–3700

    PubMed  CAS  Google Scholar 

  159. Qin Z (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nature Med 4:627–630

    PubMed  CAS  Google Scholar 

  160. Galetto A (2003) Drug- and cell-mediated antitumor cytotoxicities modulate cross-presentation of tumor antigens by myeloid dendritic cells. Anticancer Drugs 14:833–843

    PubMed  CAS  Google Scholar 

  161. Tanaka F (2002) Intratumoral injection of dendritic cells after treatment of anticancer drugs induces tumor-specific antitumor effect in vivo. Int J Cancer 101:265–269

    PubMed  CAS  Google Scholar 

  162. Correale P, Del Vecchio MT, Di Genova G et al (2005) 5-fluorouracil-based chemotherapy enhances the antitumor activity of a thymidylate synthase-directed polyepitopic peptide vaccine. J Natl Cancer Inst 97:1437–1445

    PubMed  CAS  Google Scholar 

  163. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    PubMed  CAS  Google Scholar 

  164. Taieb J (2006) A novel dendritic cell subset involved in tumor immunosurveillance. Nature Med 12:214–219

    PubMed  CAS  Google Scholar 

  165. Borg C (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114:379–388

    PubMed  CAS  Google Scholar 

  166. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    PubMed  CAS  Google Scholar 

  167. Raymond E, Dahan L, Raoul JL et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513

    PubMed  CAS  Google Scholar 

  168. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    PubMed  CAS  Google Scholar 

  169. Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    PubMed  CAS  Google Scholar 

  170. Ko JS, Zea AH, Rini BI et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    PubMed  CAS  Google Scholar 

  171. Molhoek KR, McSkimming CC, Olson WC et al (2009) Apoptosis of CD4 + CD25(high) T cells in response to Sirolimus requires activation of T cell receptor and is modulated by IL-2. Cancer Immunol Immunother 58:867–876

    PubMed  CAS  Google Scholar 

  172. Zhao W, Gu YH, Song R et al (2008) Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia 22:1226–1233

    PubMed  CAS  Google Scholar 

  173. Houben R, Voigt H, Noelke C et al (2009) MAPK-independent impairment of T-cell responses by the multikinase inhibitor sorafenib. Mol Cancer Ther 8:433–440

    PubMed  CAS  Google Scholar 

  174. Busse A, Asemissen AM, Nonnenmacher A et al (2011) Immunomodulatory effects of sorafenib on peripheral immune effector cells in metastatic renal cell carcinoma. Eur J Cancer 47:690–696

    PubMed  CAS  Google Scholar 

  175. Hipp MM, Hilf N, Walter S et al (2008) Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111:5610–5620

    PubMed  CAS  Google Scholar 

  176. Alfaro C, Suarez N, Gonzalez A et al (2009) Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br J Cancer 100:1111–1119

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Meniawy MBBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meniawy, T., Nowak, A., Lake, R. (2013). Effect of Chemotherapy on the Tumor Microenvironment and Anti-tumor Immunity. In: Keisari, Y. (eds) Tumor Ablation. The Tumor Microenvironment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4694-7_1

Download citation

Publish with us

Policies and ethics