Skip to main content

Ion Channel Regulation by the LKB1-AMPK Signalling Pathway: The Key to Carotid Body Activation by Hypoxia and Metabolic Homeostasis at the Whole Body Level

  • Conference paper
  • First Online:
Arterial Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 758))

Abstract

Our recent investigations provide further support for the proposal that, consequent to inhibition of mitochondrial oxidative phosphorylation, activation of AMP-activated protein kinase (AMPK) mediates carotid body excitation by hypoxia. Consistent with the effects of hypoxia, intracellular dialysis from a patch pipette of an active (thiophosphorylated) recombinant AMPK heterotrimer (α2β2γ1) or application of the AMPK activators AICAR and A769662: (1) Inhibited BKCa currents and TASK K+ currents in rat carotid body type I cells; (2) Inhibited whole-cell currents carried by KCa1.1 and TASK3, but not TASK1 channels expressed in HEK293 cells; (3) Triggered carotid body activation. Furthermore, preliminary studies using mice with conditional knockout in type I cells of the primary upstream kinase that activates AMPK in response to metabolic stresses, LKB1, appear to confirm our working hypothesis. Studies on mice with knockout of the catalytic α1 subunit and α2 subunits of AMPK, respectively, have proved equally consistent. Accumulating evidence therefore suggests that the LKB1-AMPK signalling pathway is necessary for hypoxia-response coupling by the carotid body, and serves to regulate oxygen and therefore energy supply at the whole body level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biscoe TJ, Pallot DJ (1982) The carotid body chemoreceptor: an investigation in the mouse. Q J Exp Physiol 67(4):557–576 (Cambridge, England)

    PubMed  CAS  Google Scholar 

  • Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  • Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol 498(Pt 3):649–662

    PubMed  CAS  Google Scholar 

  • Buckler KJ (2007) TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157(1):55–64

    Article  PubMed  CAS  Google Scholar 

  • Buttigieg J, Brown ST, Lowe M, Zhang M, Nurse CA (2008) Functional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells. Am J Physiol Cell Physiol 294(4):C945–956

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS (2010) Mitochondrial complex III: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol 174(3):175–181

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40(5):533–539

    Article  PubMed  CAS  Google Scholar 

  • De Castro F (1928) Sur la structure et l’innervation du sinus carotidien de l’homme et des mammiferes: nouveau faits sur l’innervation et la fonction du glomus caroticum. Trab Lab Invest Biol Univ Madrid 24:330–380

    Google Scholar 

  • Delpiano MA, Hescheler J (1989) Evidence for a PO2-sensitive K  +  channel in the type-I cell of the rabbit carotid body. FEBS Lett 249(2):195–198

    Article  PubMed  CAS  Google Scholar 

  • Dipp M, Evans AM (2001) Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. Circ Res 89(1):77–83

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR, Biscoe TJ (1992a) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450:33–61

    PubMed  CAS  Google Scholar 

  • Duchen MR, Biscoe TJ (1992b) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31

    PubMed  CAS  Google Scholar 

  • Evans AM (2006) AMP-activated protein kinase and the regulation of Ca2+ signalling in O2-sensing cells. J Physiol 574(Pt 1):113–123

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P, Kinnear NP, Hardie DG (2005) Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280(50):41504–41511

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Hardie DG, Peers C, Wyatt CN, Viollet B, Kumar P, Dallas ML, Ross F, Ikematsu N, Jordan HL, Barr BL, Rafferty JN, Ogunbayo O (2009) Ion channel regulation by AMPK: the route of hypoxia-response coupling in the carotid body and pulmonary artery. Ann N Y Acad Sci 1177:89–100

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Hardie DG, Peers C, Mahmoud A (2011) Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr Opin Anaesthesiol 24(1):13–20

    Article  PubMed  Google Scholar 

  • Eyzaguirre C, Koyano H (1965a) Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol 178(3):385–409

    PubMed  CAS  Google Scholar 

  • Eyzaguirre C, Koyano H (1965b) Effects of some pharmacological agents on chemoreceptor discharges. J Physiol 178(3):410–437

    PubMed  CAS  Google Scholar 

  • Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, Hirst W, Michel AD, Randall A, Hardie DG, Frenguelli BG (2004) AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 88(5):1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201(Pt 8):1129–1139

    PubMed  CAS  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74(4):829–898

    PubMed  CAS  Google Scholar 

  • Gonzalez C, Vicario I, Almaraz L, Rigual R (1995a) Oxygen sensing in the carotid body. Biol Signal 4(5):245–256

    Article  CAS  Google Scholar 

  • Gonzalez C, Lopez-Lopez JR, Obeso A, Perez-Garcia MT, Rocher A (1995b) Cellular mechanisms of oxygen chemoreception in the carotid body. Respir Physiol 102(2–3):137–147

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev 8(10):774–785

    Article  CAS  Google Scholar 

  • Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 29:18–24

    Google Scholar 

  • Hatton CJ, Carpenter E, Pepper DR, Kumar P, Peers C (1997) Developmental changes in isolated rat type I carotid body cell K  +  currents and their modulation by hypoxia. J Physiol 501(Pt 1):49–58

    Article  PubMed  CAS  Google Scholar 

  • Hescheler J, Delpiano MA, Acker H, Pietruschka F (1989) Ionic currents on type-I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. Brain Res 486(1):79–88

    Article  PubMed  CAS  Google Scholar 

  • Heymans C, Bouckaert JJ, Dautrebande L (1930) Sinus carotidien et reflexes respiratoires. II. Influences respiratoires reflexes de l’acidose, de l’alcalose, de l’anhydride carbonique, de l’ion hydrogene et de l’anoxemie: sinus carotidiens et echanges respiratoires dans les poumons et au dela poumons. Arch Int Pharmacodyn Ther 39(2)):400–408

    Google Scholar 

  • Hill AA, Garcia AJ 3rd, Zanella S, Upadhyaya R, Ramirez JM (2011) Graded reductions in oxygenation evoke graded reconfiguration of the isolated respiratory network. J Neurophysiol 105(2):625–639

    Article  PubMed  CAS  Google Scholar 

  • Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN, David JA, Suman R, Peers C, Hardie DG, Evans AM (2011) Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc Natl Acad Sci U S A 44:18132–18137

    Article  Google Scholar 

  • Iturriaga R, Alcayaga J (2004) Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Rev 47(1–3):46–53

    Article  PubMed  CAS  Google Scholar 

  • Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250(5 Pt 1):C663–675

    PubMed  CAS  Google Scholar 

  • Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K  +  channel in rat carotid body glomus cells. J Physiol 587(Pt 12):2963–2975

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Prabhakar N (2007) Sensing hypoxia: carotid body mechanisms and reflexes in health and disease. Respir Physiol Neurobiol 157(1):1–3

    Article  PubMed  Google Scholar 

  • Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241(4865):580–582, New York, NY

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lopez JR, De Luis DA, Gonzalez C (1993) Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body. J Physiol 460:15–32

    PubMed  CAS  Google Scholar 

  • Mills E, Jobsis FF (1972) Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35(4):405–428

    PubMed  CAS  Google Scholar 

  • Nurse CA (2010) Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 95(6):657–667

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Saenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, Lopez-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135(4):379–392

    Article  PubMed  CAS  Google Scholar 

  • Peers C (1990) Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current. Neurosci Lett 119(2):253–256

    Article  PubMed  CAS  Google Scholar 

  • Peers C, Wyatt CN, Evans AM (2010) Mechanisms for acute oxygen sensing in the carotid body. Respir Physiol Neurobiol 174(3):292–298

    Article  PubMed  CAS  Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 107(23):10719–10724

    Article  PubMed  CAS  Google Scholar 

  • Perez-Garcia MT, Colinas O, Miguel-Velado E, Moreno-Dominguez A, Lopez-Lopez JR (2004) Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. J Physiol 557(Pt 2):457–471

    Article  PubMed  CAS  Google Scholar 

  • Ross FA, Rafferty JN, Dallas ML, Ogunbayo O, Ikematsu N, McClafferty H, Tian L, Widmer H, Rowe IC, Wyatt CN, Shipston MJ, Peers C, Hardie DG, Evans AM (2011) Selective expression in carotid body type I cells of a single splice variant of the large conductance calcium- and voltage-activated potassium channel confers regulation by AMP-activated protein kinase. J Biol Chem 286(14):11929–11936

    Article  PubMed  CAS  Google Scholar 

  • Stea A, Nurse CA (1991) Whole-cell and perforated-patch recordings from O2-sensitive rat carotid body cells grown in short- and long-term culture. Pflugers Archiv 418(1–2):93–101

    PubMed  CAS  Google Scholar 

  • Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203(7):1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Thompson RJ, Jackson A, Nurse CA (1997) Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol 498(Pt 2):503–510

    PubMed  CAS  Google Scholar 

  • Verna A, Roumy M, Leitner LM (1975) Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells. Brain Res 100(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • Wasicko MJ, Breitwieser GE, Kim I, Carroll JL (2006) Postnatal development of carotid body glomus cell response to hypoxia. Respir Physiol Neurobiol 154(3):356–371

    Article  PubMed  CAS  Google Scholar 

  • Wyatt CN, Evans AM (2007) AMP-activated protein kinase and chemotransduction in the carotid body. Respir Physiol Neurobiol 157(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Wyatt CN, Mustard KJ, Pearson SA, Dallas ML, Atkinson L, Kumar P, Peers C, Hardie DG, Evans AM (2007) AMP-activated protein kinase mediates carotid body excitation by hypoxia. J Biol Chem 282(11):8092–8098

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472(7342):230–233

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1):143–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by a Programme Grant from the Wellcome Trust (81195, to AME, CP and DGH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mark Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Evans, A.M., Peers, C., Wyatt, C.N., Kumar, P., Hardie, D.G. (2012). Ion Channel Regulation by the LKB1-AMPK Signalling Pathway: The Key to Carotid Body Activation by Hypoxia and Metabolic Homeostasis at the Whole Body Level. In: Nurse, C., Gonzalez, C., Peers, C., Prabhakar, N. (eds) Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 758. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4584-1_11

Download citation

Publish with us

Policies and ethics