Skip to main content

Methodologic Approaches to Investigate Vascular Tube Morphogenesis and Maturation Events in 3D Extracellular Matrices In Vitro and In Vivo

  • Chapter
  • First Online:
The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications

Abstract

De novo blood vessel formation is regulated by two major processes, termed vasculogenesis and angiogenesis. A key aspect of this formation is the process of endothelial cell (EC) lumen and tube assembly. Major advances have been made in our understanding of the EC lumen formation process primarily through the development and utilization of in vitro models of this process in 3D extracellular matrices. Recent advances include the identification of an EC lumen signaling complex that controls EC tubulogenesis in 3D collagen matrices and determination of growth factor requirements that are required for these events under serum-free defined conditions. Components of the lumen signaling complex include the collagen-binding integrin, α2β1, the membrane-type 1 matrix metalloproteinase, MT1-MMP, junction adhesion molecules B and C, Par3, Par6b and the Rho GTPase, Cdc42. This complex of proteins controls EC lumen and tube formation and establishes the signaling conditions necessary to both form and sustain an EC tube network in 3D matrices. This EC tube network induces the recruitment of pericytes which then affect tube and extracellular matrix remodeling events to regulation the maturation of tubes. Methodologies utilized to address these events are presented to illustrate how the cellular and molecular basis for EC tube morphogenesis and stabilization are currently investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis GE, Stratman AN, Sacharidou A et al (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165

    Article  PubMed  CAS  Google Scholar 

  2. Davis GE, Koh W, Stratman AN (2007) Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res C Embryo Today 81:270–285

    Article  PubMed  CAS  Google Scholar 

  3. Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16:222–231

    Article  PubMed  CAS  Google Scholar 

  4. Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cell Tissues Organs 195(1–2):122–143

    Article  CAS  Google Scholar 

  5. Xu K, Cleaver O (2011) Tubulogenesis during blood vessel formation. Semin Cell Dev Biol 22(9):993–1004

    Article  PubMed  CAS  Google Scholar 

  6. Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3:a005090

    Article  PubMed  Google Scholar 

  7. Kamei M, Saunders WB, Bayless KJ et al (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    Article  PubMed  CAS  Google Scholar 

  8. Zovein AC, Alfonso Luque A, Turlo KA et al (2010) Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18:39–51

    Article  PubMed  CAS  Google Scholar 

  9. Xu K, Sacharidou A, Fu S et al (2011) Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 20:1–14

    Article  CAS  Google Scholar 

  10. Bayless KJ, Salazar R, Davis GE (2000) RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 156:1673–1683

    Article  PubMed  CAS  Google Scholar 

  11. Bayless KJ, Davis GE (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115:1123–1136

    PubMed  CAS  Google Scholar 

  12. Koh W, Mahan RD, Davis GE (2008) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121:989–1001

    Article  PubMed  CAS  Google Scholar 

  13. Koh W, Sachidanandam K, Stratman AN et al (2009) Formation of endothelial lumens requires a coordinated PKC{epsilon}-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J Cell Sci 122:1812–1822

    Article  PubMed  CAS  Google Scholar 

  14. Sacharidou A, Koh W, Stratman AN et al (2010) Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 115(25):5259–5269

    Article  PubMed  CAS  Google Scholar 

  15. Saunders WB, Bohnsack BL, Faske JB et al (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175:179–191

    Article  PubMed  CAS  Google Scholar 

  16. Stratman AN, Saunders WB, Sacharidou A et al (2009) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114:237–247

    Article  PubMed  CAS  Google Scholar 

  17. Yuan L, Sacharidou A, Stratman AN et al (2011) RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood 118:1145–1153

    Article  PubMed  CAS  Google Scholar 

  18. Koh W, Stratman AN, Sacharidou A et al (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101

    Article  PubMed  CAS  Google Scholar 

  19. Stratman AN, Malotte KM, Mahan RD et al (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101

    Article  PubMed  CAS  Google Scholar 

  20. Stratman AN, Schwindt AE, Malotte KM et al (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116:4720–4730

    Article  PubMed  CAS  Google Scholar 

  21. Stratman AN, Davis MJ, Davis GE (2011) VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 117:3709–3719

    Article  PubMed  Google Scholar 

  22. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  PubMed  CAS  Google Scholar 

  23. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

    Article  PubMed  CAS  Google Scholar 

  24. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  PubMed  CAS  Google Scholar 

  25. Davis GE, Bayless KJ, Mavila A (2002) Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec 268:252–275

    Article  PubMed  CAS  Google Scholar 

  26. Davis GE, Stratman AN, Sacharidou A (2011) Molecular control of vascular tube morphogenesis and stabilization: regulation by extracellular matrix, matrix metalloproteinases and endothelial cell-pericyte interactions. In: Gerecht S (ed) Biophysical regulation of vascular differentiation. Springer, New York, pp 17–47

    Chapter  Google Scholar 

  27. Bell SE, Mavila A, Salazar R et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114:2755–2773

    PubMed  CAS  Google Scholar 

  28. Davis GE, Camarillo CW (1996) An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224:39–51

    Article  PubMed  CAS  Google Scholar 

  29. Davis GE, Pintar Allen KA, Salazar R et al (2001) Matrix metalloproteinase-1 and −9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 114:917–930

    PubMed  CAS  Google Scholar 

  30. Saunders WB, Bayless KJ, Davis GE (2005) MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 118:2325–2340

    Article  PubMed  CAS  Google Scholar 

  31. Davis GE, Senger DR (2008) Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol 15:197–203

    Article  PubMed  CAS  Google Scholar 

  32. Bayless KJ, Davis GE (2004) Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem 279:11686–11695

    Article  PubMed  CAS  Google Scholar 

  33. He TC, Zhou S, da Costa LT et al (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  34. Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33:891–895

    Article  PubMed  CAS  Google Scholar 

  35. Etienne-Manneville S (2004) Cdc42–the centre of polarity. J Cell Sci 117:1291–1300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL59373, HL79460, HL87308, and HL105606 to GED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Davis M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stratman, A.N., Kim, D.J., Sacharidou, A., Speichinger, K.R., Davis, G.E. (2012). Methodologic Approaches to Investigate Vascular Tube Morphogenesis and Maturation Events in 3D Extracellular Matrices In Vitro and In Vivo . In: Zudaire, E., Cuttitta, F. (eds) The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4581-0_6

Download citation

Publish with us

Policies and ethics