Skip to main content

Pharmacologically Active Compounds from Ticks and Other Arthropods and Their Potential Use in Anticancer Therapy

  • Chapter
  • First Online:
Natural compounds as inducers of cell death

Abstract

Arthropods represent a rich source of various biologically and pharmacologically active molecules and were also shown to possess cytotoxic and cytolytic effects on tumor cell lines as well as anti-angiogenic activities. Cytotoxic and apoptosis-inducing factors were found, e.g., in some butterflies, beetles and saprophagous flies, however, venomous and blood feeding animals contain the widest array of pharmacologically active compounds. Antitumor and anti-angiogenic compounds have been detected in saliva of ticks and blood feeding insects quite recently. For example, an antigen 5-like protein (tabRTS) containing the RTS-disintegrin motif with anti-angiogenic properties was isolated from horsefly salivary glands. However, and in contrast to blood feeding dipterans (e.g., horseflies or mosquitoes), hard ticks (Ixodida) as a distinct group of blood feeding arthropods remain attached to their hosts for several days to weeks. Tick salivary compounds are secreted into the host during feeding and are involved in the modulation of host haemostasis and immune responses and thus are essential for completion of the feeding process and tick survival. During the extended feeding period, expression of new proteins is switched on in salivary glands of hard ticks. By exploring the proteins expressed in tick salivary glands (sialome), novel sequences with similarities to disintegrin metalloproteases and thrombospondin were discovered, suggesting that tick salivary peptides can be involved in disruption of platelet aggregation, cell-matrix interactions and/or inhibition of angiogenesis. These findings suggest that tick saliva modulates negatively angiogenesis-dependent wound healing and tissue repair, allowing ticks to feed for prolonged periods. Antihemostatic factors in tick saliva represent another source of promising anticancer therapeutics. Ixolaris, a tissue factor inhibitor from ticks blocks tumor growth and angiogenesis in a glioblastoma model. The inhibitory effect of ixolaris is most probably due to downregulation of the vascular endothelial growth factor and reduced tumor vascularization. Amblyomin-X, a tick Kunitz-type serine protease inhibitor induces tumor mass regression and decreased number of metastatic processes in a murine melanoma model, indicating that the compound selectively acts on tumor cells by inducing apoptosis. Generally, the diversity of arthropod bioactive molecules is very wide and needs further extensive exploration with the perspective to discover novel compounds with potential use as pharmaceuticals in anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn MY, Ryu KS, Lee YW, Kim YS (2000) Cytotoxicity and L-amino acid oxidase activity of crude insect drugs. Arch Pharm Res 23:477–481

    Article  PubMed  CAS  Google Scholar 

  • Andrade BB, Teixeira CR, Barral A, Barral-Netto M (2005) Haematophagous arthropod saliva and host defense system: a tale of tear and blood. Anais da Academia Brasileira de Ciências (Ann Braz Acad Sci) 77:665–693

    Article  CAS  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Rep Reg 16:585–601

    Article  Google Scholar 

  • Batista IFC, Ramos OHP, Ventura JS, Junqueira-de-Azevedo ILM, Ho PL, Chudzinski-Tavassi AM (2010) A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch Biochem Biophys 493:151–156

    Article  PubMed  CAS  Google Scholar 

  • Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129:S161–S176

    Article  PubMed  CAS  Google Scholar 

  • Bulet P, Hetru M, Dimarcq J-L, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  • Carneiro-Lobo TC, Konig S, Machado DE, Nasciutti LE, Forni MF, Francischetti IM, Sogayar MC, Monteiro RQ (2009) Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J Thromb Haemost 7:1855–1864

    Article  PubMed  CAS  Google Scholar 

  • Charlab R, Valenzuela JG, Rowton ED, Ribeiro JMC (1999) Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA 96:15155–15160

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Wang W, Smith D, Chan SC (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336:171–179

    Article  PubMed  CAS  Google Scholar 

  • Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99:12628–12632

    Article  PubMed  CAS  Google Scholar 

  • Chudzinski-Tavassi AM, De-Sá-Júnior PL, Simons SM, Maria DA, de Souza VJ, de Fátima Correia Batista I, Faria F, Durães E, Moraes Reis E, Demasi M (2010) A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon 56:1145–1154. doi:10.1016/j.toxicon. 2010.04.019

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Quistad GB (1998) Cytotoxic effects of arthropod venoms on various cultured cells. Toxicon 36:353–358

    Article  PubMed  CAS  Google Scholar 

  • Costa-Neto EMA (2005) Animal-based medicines: biological prospection and the sustainable use of zootherapeutic resources. An Acad Bras Cienc 77:33–43

    Article  PubMed  Google Scholar 

  • Das Gupta S, Gomes A, Debnath A, Saha A, Gomes A (2010) Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chem Biol Interact 183:293–303

    Article  Google Scholar 

  • Decrem Y, Beaufays J, Blasioli V, Lahaye K, Brossard M, Vanhamme L, Godfroid E (2008) A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J 275:1485–1499

    Article  PubMed  CAS  Google Scholar 

  • Déruaz M, Frauenschuh A, Alessandri AL, Dias JM, Coelho FM, Russo RC, Ferreira BR, Graham GJ, Shaw JP, Wells TN, Teixeira MM, Power CA, Proudfoot AE (2008) Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 205:2019–2031

    Article  PubMed  Google Scholar 

  • Díaz García A, Morier Díaz L, Rodríguez Sánchez H, Caballero Lorenzo Y (2010) Cytotoxicity of Rhopalurus junceus Cuban scorpion venom and its fractions on human tumor cell lines. Labiofam. Revista Institucional del Grupo Empresarial de Producciones Biofarmaceúticas y Químicas 1(2010):12–18

    Google Scholar 

  • Feldman L, Rouleau C (2002) Troponin I inhibits capillary endothelial cell proliferation by interaction with the cell’s bFGF receptor. Microvasc Res 63:41–49

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3:643–651

    Article  PubMed  CAS  Google Scholar 

  • Francischetti IMB, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JMC (2002) Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/Tissue factor complex. Blood 99:3602–3612

    Article  PubMed  CAS  Google Scholar 

  • Francischetti IMB, Mather TN, Ribeiro JMC (2005a) Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis. Thromb Haemost 94:167–174

    PubMed  CAS  Google Scholar 

  • Francischetti IM, My Pham V, Mans BJ, Andersen JF, Mather TN, Lane RS, Ribeiro JM (2005b) The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem Mol Biol 35:1142–1161

    Article  PubMed  CAS  Google Scholar 

  • Francischetti IMB, Sá-Nunes A, Mans BJ, Santos IM, Ribeiro JMC (2010) The role of saliva in tick feeding. Front Biosci 14:2051–2088

    Google Scholar 

  • Frauenschuh A, Power CA, Déruaz M, Ferreira BR, Silva JS, Teixeira MM, Dias JM, Martin T, Wells TN, Proudfoot AE (2007) Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus. J Biol Chem 282:27250–27258

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GK, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, Rodrıguez de la Vega RC (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto S, Sakaguchi T, You M, Xuan X, Fujisaki K (2006) Tick troponin I-like molecule is a potent inhibitor for angiogenesis. Microvasc Res 71:218–221

    Article  PubMed  CAS  Google Scholar 

  • Gao R, Zhang Y, Gopalakrishnakone P (2008) Purification and N-terminal sequence of a serine proteinase-like protein (BMK-CBP) from the venom of the Chinese scorpion (Buthus martensii Karsch). Toxicon 52:348–353

    Article  PubMed  CAS  Google Scholar 

  • Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B (2010) Anticancer potential of animal toxins and venoms. Ind J Exp Biol 48:93–103

    CAS  Google Scholar 

  • Gomez K, McVey JH (2006) Tissue factor initiated blood coagulation. Front Biosci 11:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Booth CJ, Paley MA, Wang X, DePonte K, Fikrig E, Narasimhan S, Montgomery RR (2009) Inhibition of neutrophil function by two tick salivary proteins. Infect Immun 77:2320–2329

    Article  PubMed  CAS  Google Scholar 

  • Hajnická V, Vančová I, Kocáková P, Slovák M, Gašperík J, Sláviková M, Hails RS, Labuda M, Nuttall PA (2005) Manipulation of host cytokine network by ticks: a potential gateway for pathogen transmission. Parasitology 130:333–342

    Article  PubMed  Google Scholar 

  • Hajnická V, Vančová-Štibrániová I, Slovák M, Kocáková P, Nuttall PA (2011) Ixodid tick salivary gland products target host wound healing growth factors. Int J Parasitol 41:213–223. doi:10.1016/j.ijpara.2010.09.005

    Article  PubMed  Google Scholar 

  • Harnnoi T, Sakaguchi T, Nishikawa Y, Xuan X, Fujisaki K (2007) Molecular characterization and comparative study of 6 salivary gland metalloproteases from the hard tick, Haemaphysalis longicornis. Comp Biochem Physiol B 147:93–101

    Article  PubMed  Google Scholar 

  • Hou L, Shi Y, Zhai P, Le G (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J Ethnopharmacol 111:227–231

    Article  PubMed  Google Scholar 

  • Hovius JWR, Levi M, Fikrig E (2008) Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med 5:0202–0208

    Article  CAS  Google Scholar 

  • Huh J-E, Kang K-S, Ahn K-S, Kim DH, Saikie I, Kim S-H (2003) Mylabris phalerlata induces apoptosis by caspase activation following cytochrome c release and Bid cleavage. Life Sci 73:2249–2262

    Article  PubMed  CAS  Google Scholar 

  • Ip SW, Liao SS, Lin SY, Lin JP, Yang JS, Lin ML, Chen GW, Lu HF, Lin MW, Han SM, Chung JG (2008a) The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo 22:237–245

    PubMed  Google Scholar 

  • Ip SW, Wei HC, Lin JP, Kuo HM, Liu KC, Hsu SC, Yang JS, Mei-Dueyang CTH, Han SM, Chung JG (2008b) Bee venom induced cell cycle arrest and apoptosis in human cervical epidermoid carcinoma Ca Ski cells. Anticancer Res 28:833–842

    PubMed  CAS  Google Scholar 

  • Islam MK, Tsuji N, Miyoshi T, Alim MA, Huang X, Hatta T, Fujisaki K (2009) The Kunitz-like modulatory protein haemangin is vital for hard tick blood-feeding success. PLoS Pathog 5:e1000497. doi:10.1371/journal.ppat.1000497

    Article  PubMed  Google Scholar 

  • Itoh A, Iizuka K, Natori S (1985) Antitumor effect of Sarcophaga lectin on murine transplanted tumors. Jpn J Cancer Res (Gann) 76:1027–1033

    CAS  Google Scholar 

  • Iwanaga S, Okada M, Isawa H, Morita A, Yuda M, Chinzei Y (2003) Identification and characterization of novel salivary thrombin inhibitors from the ixodidae tick, Haemaphysalis longicornis. Eur J Biochem 270:1926–1934

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, Taylor D, Yamakawa M (2009) Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30:660–668

    Article  PubMed  CAS  Google Scholar 

  • Jaworski DC, Simmen FA, Lamoreaux W, Coons LB, Muller MT, Needham GR (1995) A secreted calreticulin protein in ixodid tick (Amblyomma americanum) saliva. J Insect Physiol 41:369–375

    Article  CAS  Google Scholar 

  • Jin X, Mei H, Li X, Ma Y, Zeng A-H, Wang Y, Lu X, Chu F, Wu Q, Zhu J (2010) Apoptosis-inducing activity of the antimicrobial peptide cecropin of Musca domestica in human hepatocellular carcinoma cell line BEL-7402 and the possible mechanism. Acta Biochim Biophys Sin 2010:259–265

    Article  Google Scholar 

  • Kazimírová M, Dovinová I, Rolníková T, Tóthová L, Hunáková Ľ (2006) Anti-proliferative activity and apoptotic effect of tick salivary gland extracts on human HeLa cells. Neuroendocrinol Lett 27(suppl 2):48–52

    PubMed  Google Scholar 

  • Koh CY, Kini RM (2009) Molecular diversity of anticoagulants from haematophagous animals. Thromb Haemost 102:437–453

    PubMed  CAS  Google Scholar 

  • Koh CY, Kazimirova M, Trimnell A, Takac P, Labuda M, Nuttall PA, Kini RM (2007) Variegin, a novel fast and tight binding thrombin inhibitor from the tropical bont tick. J Biol Chem 282:29101–29113

    Article  PubMed  CAS  Google Scholar 

  • Kok SH, Chui CH, Lam WS, Chen J, Lau FY, Wong RS, Cheng GY, Tang WK, Cheng CH, Tang JC, Chan AS (2006) Mechanistic insight into a novel synthetic cantharidin analogue in a leukaemia model. Int J Mol Med 18:375–379

    PubMed  CAS  Google Scholar 

  • Kono T, Watanabe M, Koyama K, Sugimura T, Wakabayashi K (1997) Anti-cancer substance in Pieris brassicae. Proc Jpn Acad 73B:192–194

    Google Scholar 

  • Kono T, Watanabe M, Koyama K, Kishimoto T, Fukushima S, Sugimura T, Wakabayashi K (1999) Cytotoxic activity of pierisin, from the cabbage butterfly, Pieris rapae, in various human cancer cell lines. Cancer Lett 137:75–81

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Wakabayashi K, Masutani M, Koiwai K, Watanabe M, Yamazaki S, Kono T, Miki K, Sugimura T (1996) Presence in Pieris rapae of cytotoxic activity against human carcinoma cells. Jpn J Cancer Res 87:1259–1262

    Article  PubMed  CAS  Google Scholar 

  • Kramer C, Nahmias Z, Norman DD, Mulvihill TA, Coons LB, Cole JA (2008) Dermacentor variabilis: regulation of fibroblast migration by tick salivary gland extract and saliva. Exp Parasitol 119:391–397

    Article  PubMed  CAS  Google Scholar 

  • Kuczer M, Dziubasik K, Łuczak M, Majewska A, Kamysz W, Saniewska A, Konopińska D (2008) The search for new biological activities for selected insect peptides. Pestycydy 1–2:5–11

    Google Scholar 

  • Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668

    Article  PubMed  CAS  Google Scholar 

  • Kwak DH, Kim JK, Kim JY, Jeong HY, Keum KS, Han SH, Rho YI, Woo WH, Jung KY, Choi BK, Choo YK (2002) Anti-angiogenic activities of Cnidium officinale Makino and Tabanus bovinus. J Ethnopharmacol 81:373–379

    Article  PubMed  Google Scholar 

  • Laurens N, Koolwijk P, de Maat MP (2006) Fibrin structure and wound healing. J Thromb Haemost 4:932–939

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, Harder J, Unteregger G, Stöckle M (2006) Antitumor activity of the antimicrobial peptide Magainin II against bladder cancer cell lines. Eur Urol 50:141–147

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Chen Z (2009) The effects of cantharidin and cantharidin derivates on tumour cells. Anticancer Agents Med Chem 9:392–396

    PubMed  CAS  Google Scholar 

  • Lu J, Chen Z-w (2010) Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis. Peptides 31:44–50

    Article  PubMed  Google Scholar 

  • Lyons SA, O’Neal J, Sontheimer H (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39:162–173

    Article  PubMed  Google Scholar 

  • Ma D, Gao L, An S, Song Y, Wu J, Xu X, Lai R (2010) A horsefly saliva antigen 5-like protein containing RTS motif is an angiogenesis inhibitor. Toxicon 55:45–51

    Article  PubMed  CAS  Google Scholar 

  • Macedo-Ribeiro S, Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, Stürzebecher J, Fuentes-Prior P, Pereira PJ (2008) Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 3:e1624

    Article  PubMed  Google Scholar 

  • Mans BJ, Louw AI, Neitz AWH (2002) The RGD integrin recognition motif of savignygrin, a platelet aggregation inhibitor from the soft tick, Ornithodoros savignyi is presented on the Kunitz-BPTI fold. J Biol Chem 277:21371–21378

    Article  PubMed  CAS  Google Scholar 

  • Maritz-Olivier C, Stutzer C, Jongejan F, Neitz AW, Gaspar AR (2007) Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol 23:397–407

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Nakano T, Yamamoto M, Matsushima-Hibiya Y, Odagiri K-I, Yata O, Koyama K, Sugimura T, Wakabayashi K (2008) Distribution of cytotoxic and DNA ADP-ribosylating activity in crude extracts from butterflies among the family Pieridae. Proc Natl Acad Sci 105:2516–2520

    Article  PubMed  CAS  Google Scholar 

  • Matsushima-Hibiya Y, Watanabe M, Kono T, Kanazawa T, Koyama K, Sugimura T, Wakabayashi K (2000) Purification and cloning of pierisin-2, an apoptosis-inducing protein from the cabbage butterfly, Pieris brassicae. Eur J Biochem 267:5742–5750

    Article  PubMed  CAS  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Moon DO, Park SY, Choi YH, Kim ND, Lee C, Kim GY (2008) Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon 51:112–120

    Article  PubMed  CAS  Google Scholar 

  • Moore AJ, Devine DA, Bibby MC (1994) Preliminary experimental anticancer activity of cecropins. Pept Res 7:265–269

    PubMed  CAS  Google Scholar 

  • Nienaber J, Gaspar AR, Neitz AW (1999) Savignin, a potent thrombin inhibitor isolated from the salivary glands of the tick Ornithodoros savignyi (Acari: Argasidae). Exp Parasitol 3:82–91

    Article  Google Scholar 

  • Nierodzik ML, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10:355–362

    Article  PubMed  CAS  Google Scholar 

  • Nuttall PA, Labuda M (2004) Tick-host interactions: saliva-activated transmission. Parasitology 129:S177–S189

    Article  PubMed  CAS  Google Scholar 

  • Oršolić N (2012) Bee venom in cancer therapy. Cancer and Metastasis Rev 31:173–194

    Article  Google Scholar 

  • Park JH, Jeong YJ, Park KK, Cho HJ, Chung IK, Min KS, Kim M, Lee KG, Yeo JH, Park KK, Chang YC (2010) Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-κB and AP-1-dependent MMP-9 expression. Mol Cells 29:209–215

    Article  PubMed  CAS  Google Scholar 

  • Pimenta AM, De Lima ME (2005) Small peptides, big world: biotechnological potential in neglected bioactive peptides from arthropod venoms. J Pept Sci 11:670–676

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, Koski RA, Fikrig E (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JMC (1995) How ticks make a living. Parasitol Today 11:91–93

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JMC, Francischetti IMB (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48:73–88

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, Wikel SK (2006) An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 36:111–129

    Article  PubMed  CAS  Google Scholar 

  • Roberts DR (1996) Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J 10:1183–1191

    PubMed  CAS  Google Scholar 

  • Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115:246–270

    Article  PubMed  CAS  Google Scholar 

  • Steen NA, Barker SC, Alewood PF (2006) Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47:1–20

    Article  PubMed  CAS  Google Scholar 

  • Suttmann H, Retz M, Paulsen F, Harder J, Zwergel U, Kamradt J, Wullich B, Unteregger G, Stöckle M, Lehmann J (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol 8:5. doi:10.1186/1471-2490-8-5

    Article  PubMed  Google Scholar 

  • Titus RG, Bishop JV, Mejia JS (2006) The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol 28:131–141

    PubMed  CAS  Google Scholar 

  • Tu AT, Motoyashi T, Azimov DA (2005) Bioactive compounds in tick and mite venoms (saliva). Toxin Rev 24:143–174

    Article  CAS  Google Scholar 

  • Valenzuela JG (2002) High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem Mol Biol 32:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela JG (2004) Exploring tick saliva: from biochemistry to “sialomes” and functional genomics. Parasitology 129:S83–S94

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela JG, Francischetti IMB, Pham VM, Garfield MK, Mather TN, Ribeiro JMC (2002) Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 205:2843–2864

    PubMed  CAS  Google Scholar 

  • Wang WX, Ji YH (2005) Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro. J Neurooncol 73(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kono T, Koyama K, Sugimura T, Wakabayashi K (1998) Purification of pierisin, an inducer of apoptosis in human gastric carcinoma cells, from cabbage butterfly, Pieris rapae. Jpn J Cancer Res 89:556–561

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kono T, Matsushima Hibiya Y, Kanazawa T, Nishisaka N, Kishimoto T, Koya K, Sugimura T, Wakabayashi K (1999) Molecular cloning of an apoptosis-inducing protein, pierisin, from cabbage butterfly: possible involvement of ADP ribosylation in its activity. Proc Natl Acad Sci 96:10608–10613

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  • Wikel SK, Alarcon-Chaidez FJ (2001) Progress toward molecular characterization of ectoparasite modulation of host immunity. Vet Parasitol 101:275–287

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Nakano T, Matsushima-Hibiya Y, Totsuka Y, Takahashi-Nakaguchi A, Matsumoto Y, Sugimura T, Wakabayashi K (2009) Molecular cloning of apoptosis-inducing Pierisin-like proteins, from two species of white butterfly, Pieris melete and Aporia crataegi. Comp Biochem Physiol B 154:326–333

    Article  PubMed  Google Scholar 

  • Yang P, Abe S, Zhao Y-P, An Y, Suzuki K (2004) Growth suppression of rat hepatoma cells by a pentapeptide from Antheraea yamamai. J Insect Biotechnol Sericol 73:7–13

    CAS  Google Scholar 

  • You M, Xuan X, Tsuji N, Kamio T, Igarashi I, Nagasawa H, Mikami T, Fujisaki K (2001) Molecular characterization of a troponin I-like protein from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 32:67–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency (contract no. APVV-51-004505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Kazimírová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kazimírová, M. (2012). Pharmacologically Active Compounds from Ticks and Other Arthropods and Their Potential Use in Anticancer Therapy. In: Diederich, M., Noworyta, K. (eds) Natural compounds as inducers of cell death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4575-9_7

Download citation

Publish with us

Policies and ethics