Skip to main content

Anti-proliferative and Apoptosis-Inducing Properties of Xanthohumol, a Prenylated Chalcone from Hops (Humulus lupulus L.)

  • Chapter
  • First Online:
Natural compounds as inducers of cell death

Abstract

Xanthohumol (XN) is a prenylated chalcone found at high ­concentrations in hop cones (Humulus lupulus L.). XN has been characterized as a promising cancer chemopreventive lead structure that acts via a broad spectrum of bioactivities. This chapter summarizes the anti-proliferative and apoptosis-inducing potential of XN and gives a detailed overview of underlying mechanisms and pathways targeted by XN to induced programmed cell death. XN is a potent inhibitor of NF-κB and inhibits activation of the death-receptor pathway by tumor necrosis factor (TNF). In various cell lines, XN treatment results in an immediate transient increase in mitochondria-derived reactive oxygen species (ROS) that is considered as the initial trigger of apoptosis induction via the intrinsic pathway by breakdown of the mitochondrial membrane potential, release of cytochrome c and activation of the caspase cascade. Oxidative stress may also contribute to the activation of endoplasmatic reticulum (ER) stress and unfolded protein response recently identified as a novel mechanisms underlying XN-mediated apoptosis induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

acute myelocytic leukemia

A-SMase:

acid sphingomyelinase

ATF:

activating transcription factor

ATP:

adenosine triphosphate

BiP:

immunoglobulin-heavy-chain binding protein

BPH:

benign prostate hyperplasia

CHOP:

CAAT/enhancer-binding protein (C/EBP) homologous protein

CLL:

chronic lymphocytic leukemia

Cox:

cyclooxygenase

CYP:

cytochrome P450

DC:

dendritic cells

DCF-DA:

dichlorofluorescein-diacetate

DHE:

dihydroethidium

DISC:

death-inducing signaling complex

DMBA:

dimethylbenz-[a]-anthracene

DMSO:

dimethylsulfoxide

DR:

death receptor

ER:

endoplasmatic reticulum

FADD:

Fas-associated death domain

FITC:

fluorescein isothiocyanate

Gadd153:

growth arrest and DNA damage 153

GRP78:

glucose-regulated protein 78

GSH:

glutathione

H2O2 :

hydrogen peroxide

HUVEC:

human umbilical vein endothelial cells

IC50 :

half-maximal inhibitory concentration

IKK:

I-κB kinase

IL:

interleukin

Ire1α:

inositol-requiring 1α

LDH:

lactate dehydrogenase

MMP:

matrix metalloprotease

MnTMPyP:

manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin

MTT:

3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazoliumbromide

NAC:

N-acetyl cysteine

NAD(P)H:

nicotinamide adenine dinucleotide phosphate

NF-κB:

nuclear factor κB

O -•2 :

superoxide anion radicals

OH :

hydroxyl radicals

PARP:

poly(ADP-ribose)polymerase

PERK:

double stranded RNA-dependent protein kinase (PKR)-like ER kinase

RIP:

receptor interacting kinase

ROS:

reactive oxygen species

SCID:

severe combined immuno-deficient

SM:

sphingomyelin

SOD:

superoxide dismutase

SRB:

sulforhodamine B

TNF:

tumor necrosis factor

TNF-R1:

TNF-receptor 1

TRAF:

TNF receptor-associated factor

TRAIL:

TNF-related apoptosis-inducing ligand

Trb3:

Tribble homolog 3

TUNEL:

TdT-mediated dUTP-biotin nick end labeling

UPR:

unfolded protein response

XBP1:

X-box-binding protein 1

XN:

Xanthohumol

Ψm :

mitochondrial membrane potential

ρ0 :

rho zero

References

  • Ak P, Levine AJ (2010) p53 and NF-kappaB: different strategies for responding to stress lead to a functional antagonism. FASEB J 24(10):3643–3652. doi:fj.10-160549 [pii] 10.1096/fj.10-160549

    Article  PubMed  CAS  Google Scholar 

  • Albini A, Dell’Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, Fassina G (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20(3):527–529

    PubMed  CAS  Google Scholar 

  • Botta B, Vitali A, Menendez P, Misiti D, Delle MG (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12(6):717–739

    Article  PubMed  Google Scholar 

  • Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54(3):311–314

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    PubMed  CAS  Google Scholar 

  • Carpinteiro A, Dumitru C, Schenck M, Gulbins E (2008) Ceramide-induced cell death in malignant cells. Cancer Lett 264(1):1–10. doi: S0304-3835(08)00082-7 [pii] 10.1016/j.canlet.2008.02.020

    Article  PubMed  CAS  Google Scholar 

  • Chadwick LR, Pauli GF, Farnsworth NR (2006) The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 13(1-2):119–131

    Article  PubMed  CAS  Google Scholar 

  • Colgate EC, Miranda CL, Stevens JF, Bray TM, Ho E (2007) Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett 246(1–2):201–209

    Article  PubMed  CAS  Google Scholar 

  • Dell’Eva R, Ambrosini C, Vannini N, Piaggio G, Albini A, Ferrari N (2007) AKT/NF-kappaB inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer 110(9):2007–2011

    Article  PubMed  Google Scholar 

  • Delmulle L, Vanden Berghe T, Keukeleire DD, Vandenabeele P (2008) Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother Res 22(2):197–203. doi:10.1002/ptr.2286

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377

    Article  PubMed  CAS  Google Scholar 

  • Dorn C, Kraus B, Motyl M, Weiss TS, Gehrig M, Scholmerich J, Heilmann J, Hellerbrand C (2010a) Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol Nutr Food Res 54(Suppl 2):S205–213. doi:10.1002/mnfr.200900314

    Article  PubMed  CAS  Google Scholar 

  • Dorn C, Weiss TS, Heilmann J, Hellerbrand C (2010b) Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int J Oncol 36(2):435–441

    PubMed  CAS  Google Scholar 

  • Faitova J, Krekac D, Hrstka R, Vojtesek B (2006) Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 11(4):488–505. doi:10.2478/s11658-006-0040-4

    Article  PubMed  CAS  Google Scholar 

  • Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13(3):789–794

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Deeb D, Liu Y, Gautam S, Dulchavsky SA, Gautam SC (2009) Immunomodulatory activity of xanthohumol: inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine production through suppression of NF-kappaB. Immunopharmacol Immunotoxicol 31(3):477–484. doi:10.1080/08923970902798132

    Article  PubMed  CAS  Google Scholar 

  • Gerhauser C (2005) Beer constituents as potential cancer chemopreventive agents. Eur J Cancer 41(13):1941–1954

    Article  PubMed  Google Scholar 

  • Gerhauser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, Neumann I, Scherf HR, Frank N, Bartsch H, Becker H (2002) Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol Cancer Ther 1(11):959–969

    PubMed  CAS  Google Scholar 

  • Goto K, Asai T, Hara S, Namatame I, Tomoda H, Ikemoto M, Oku N (2005) Enhanced antitumor activity of xanthohumol, a diacylglycerol acyltransferase inhibitor, under hypoxia. Cancer Lett 219(2):215–222. doi: S0304-3835(04)00577-4 [pii] 10.1016/j.canlet.2004.07.034

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22(35):5457–5470. doi: 10.1038/sj.onc.1206540 1206540 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro S, Monteiro R, Martins MJ, Calhau C, Azevedo I, Soares R (2007) Distinct modulation of alkaline phosphatase isoenzymes by 17beta-estradiol and xanthohumol in breast cancer MCF-7 cells. Clin Biochem 40(3–4):268–273

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, Aggarwal BB (2009) Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 113(9):2003–2013

    Article  PubMed  CAS  Google Scholar 

  • Heath-Engel HM, Chang NC, Shore GC (2008) The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 27(50):6419–6433. doi: onc2008309 [pii] 10.1038/onc.2008.309

    Article  PubMed  CAS  Google Scholar 

  • Henderson MC, Miranda CL, Stevens JF, Deinzer ML, Buhler DR (2000) In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 30(3):235–251

    Article  PubMed  CAS  Google Scholar 

  • Ho YC, Liu CH, Chen CN, Duan KJ, Lin MT (2008) Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines. Phytother Res 22(11):1465–1468. doi:10.1002/ptr.2481

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163. doi: 1508 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Klenke E (2008) Inhibition of angiogenesis by potential chemopreventive agents, vol 1. Vdm Verlag Dr Müller, Saarbrücken

    Google Scholar 

  • Lee SH, Kim HJ, Lee JS, Lee IS, Kang BY (2007) Inhibition of topoisomerase I activity and efflux drug transporters’ expression by xanthohumol. from hops. Arch Pharm Res 30(11):1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Lust S, Vanhoecke B, Janssens A, Philippe J, Bracke M, Offner F (2005) Xanthohumol kills B-chronic lymphocytic leukemia cells by an apoptotic mechanism. Mol Nutr Food Res 49(9):844–850. doi:10.1002/mnfr.200500045

    Article  PubMed  CAS  Google Scholar 

  • Lust S, Vanhoecke B, Van GM, Boelens J, Van MH, Kaileh M, Vanden Berghe W, Haegeman G, Philippe J, Bracke M, Offner F (2009) Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res 29(10):3797–3805

    PubMed  CAS  Google Scholar 

  • Magalhaes PJ, Carvalho DO, Cruz JM, Guido LF, Barros AA (2009) Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Nat Prod Commun 4(5):591–610

    PubMed  CAS  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293. doi:10.1089/ars.2007.1782

    Article  PubMed  CAS  Google Scholar 

  • Mendes V, Monteiro R, Pestana D, Teixeira D, Calhau C, Azevedo I (2008) Xanthohumol influences preadipocyte differentiation: implication of antiproliferative and apoptotic effects. J Agric Food Chem 56(24):11631–11637. doi: 10.1021/jf802233q10.1021/jf802233q [pii]

    Article  PubMed  CAS  Google Scholar 

  • Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, Deinzer ML, Barnes DW, Buhler DR (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37(4):271–285. doi: S0278691599000198 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Miranda CL, Aponso GL, Stevens JF, Deinzer ML, Buhler DR (2000a) Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett 149(1–2):21–29

    Article  PubMed  CAS  Google Scholar 

  • Miranda CL, Stevens JF, Ivanov V, McCall M, Frei B, Deinzer ML, Buhler DR (2000b) Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J Agric Food Chem 48(9):3876–3884. doi:10.1021/Jf0002995

    Article  PubMed  CAS  Google Scholar 

  • Monteghirfo S, Tosetti F, Ambrosini C, Stigliani S, Pozzi S, Frassoni F, Fassina G, Soverini S, Albini A, Ferrari N (2008) Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation. Mol Cancer Ther 7(9):2692–2702

    Article  PubMed  CAS  Google Scholar 

  • Monteiro R, Becker H, Azevedo I, Calhau C (2006) Effect of hop (Humulus lupulus L.) flavonoids on aromatase (estrogen synthase) activity. J Agric Food Chem 54(8):2938–2943

    Article  PubMed  CAS  Google Scholar 

  • Monteiro R, Faria A, Azevedo I, Calhau C (2007) Modulation of breast cancer cell survival by aromatase inhibiting hop (Humulus lupulus L.) flavonoids. J Steroid Biochem Mol Biol 105(1–5):124–130. doi: S0960-0760(07)00105-7 [pii] 10.1016/j.jsbmb.2006.11.026

    Article  PubMed  CAS  Google Scholar 

  • Monteiro R, Calhau C, Silva AO, Pinheiro-Silva S, Guerreiro S, Gartner F, Azevedo I, Soares R (2008) Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem 104(5):1699–1707

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Becker H, Gerhauser C (2005) Xanthohumol induces apoptosis in cultured 40–16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol Nutr Food Res 49(9):837–843

    Article  PubMed  CAS  Google Scholar 

  • Pani G, Koch OR, Galeotti T (2009) The p53-p66shc-Manganese Superoxide Dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. Int J Biochem Cell Biol 41(5):1002–1005

    Article  PubMed  CAS  Google Scholar 

  • Rayalam S, Yang JY, Della-Fera MA, Park HJ, Ambati S, Baile CA (2009) Anti-obesity effects of xanthohumol plus guggulsterone in 3T3-L1 adipocytes. J Med Food 12(4):846–853. doi:10.1089/jmf.2008.0158

    Article  PubMed  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418

    Article  PubMed  CAS  Google Scholar 

  • Stevens JF, Page JE (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65(10):1317–1330

    Article  PubMed  CAS  Google Scholar 

  • Stevens JF, Ivancic M, Hsu VL, Deinzer ML (1997) Prenylflavonoids from Humulus lupulus. Phytochemistry 44(8):1575–1585

    Article  CAS  Google Scholar 

  • Strathmann J, Klimo K, Steinle R, Hussong R, Frank N, Gerhauser C (2009) Xanthohumol from Hops Prevents Hormone-dependent Tumorigenesis in vitro and in vivo. Acta Hortic. Proceedings of the second international humulus symposium 848:179–190

    Google Scholar 

  • Strathmann J, Klimo K, Sauer SW, Okun JG, Prehn JHM, Gerhauser C (2010) Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanism. FASEB J 24(8):2938–2950. doi:10.1096/fj.10-155846

    Article  PubMed  CAS  Google Scholar 

  • Szliszka E, Czuba ZP, Mazur B, Paradysz A, Krol W (2010) Chalcones and dihydrochalcones augment TRAIL-mediated apoptosis in prostate cancer cells. Molecules 15(8):5336–5353. doi: molecules15085336 [pii] 10.3390/molecules15085336

    Article  PubMed  CAS  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  PubMed  CAS  Google Scholar 

  • Vanhoecke B, Derycke L, Van Marck V, Depypere H, De Keukeleire D, Bracke M (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int J Cancer 117(6):889–895. doi:10.1002/ijc.21249

    Article  PubMed  CAS  Google Scholar 

  • Vogel S, Heilmann J (2008) Synthesis, cytotoxicity, and antioxidative activity of minor prenylated chalcones from Humulus lupulus. J Nat Prod 71(7):1237–1241. doi:10.1021/np800188b

    Article  PubMed  CAS  Google Scholar 

  • Vogel S, Ohmayer S, Brunner G, Heilmann J (2008) Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative activity. Bioorg Med Chem 16(8):4286–4293. doi: S0968-0896(08)00198-3 [pii] 10.1016/j.bmc.2008.02.079

    Article  PubMed  CAS  Google Scholar 

  • Vogel S, Barbic M, Jurgenliemk G, Heilmann J (2010) Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem 45(6):2206–2213. doi: S0223-5234(10)00105-4 [pii] 10.1016/j.ejmech.2010.01.060

    Article  PubMed  CAS  Google Scholar 

  • Xuan NT, Shumilina E, Gulbins E, Gu S, Götz F, Lang F (2010) Triggering of dendritic cell apoptosis by xanthohumol. Mol Nutr Food Res 54(S2):S214–S224. doi:10.1002/mnfr.200900324

    Article  PubMed  CAS  Google Scholar 

  • Yang JY, la-Fera MA, Rayalam S, Baile CA (2007) Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apoptosis 12(11):1953–1963

    Article  PubMed  CAS  Google Scholar 

  • Yang JY, Della-Fera MA, Rayalam S, Baile CA (2008) Enhanced effects of xanthohumol plus honokiol on apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring) 16(6):1232–1238. doi: oby200866 [pii] 10.1038/oby.2008.66

    Article  CAS  Google Scholar 

  • Zanoli P, Zavatti M (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol 116(3):383–396

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203):455–462. doi: nature07203 [pii] 10.1038/nature07203

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci USA 102(16):5727–5732

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa Gerhauser .

Editor information

Editors and Affiliations

Annex

Annex

Table 1 Anti-proliferative and apoptosis-inducing potential of XN in vitro

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strathmann, J., Gerhauser, C. (2012). Anti-proliferative and Apoptosis-Inducing Properties of Xanthohumol, a Prenylated Chalcone from Hops (Humulus lupulus L.). In: Diederich, M., Noworyta, K. (eds) Natural compounds as inducers of cell death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4575-9_4

Download citation

Publish with us

Policies and ethics