Skip to main content

Angiogenic Activity of Sera from Interstitial Lung Disease Patients in Relation to Angiotensin-Converting Enzyme Activity

  • Conference paper
  • First Online:
Respiratory Regulation - The Molecular Approach

Abstract

The role of angiogenesis in the pathogenesis of interstitial lung diseases (ILD) is unknown. Angiotensin-converting enzyme (ACE) is a marker of sarcoidosis activity and may modulate angiogenesis. The aim of this study was to examine the relationship between ACE activity in ILD patients’ sera and their effect on microvessels formation in an in vivo model of leukocyte-induced angiogenesis. The study population consisted of 77 sarcoidosis patients, 22 idiopathic pulmonary fibrosis patients, 16 bird fanciers lung patients, eight silicosis patients and 14 healthy donors. Serum ACE activity was assayed by spectrophotometric method. As an angiogenic test, a leukocyte-induced angiogenesis assay in an animal model was used. Sera from interstitial lung disease patients significantly stimulated angiogenic activity of mononuclear cells compared with healthy donors (p < 0.001). The highest ACE serum activity was measured in sera from the silicosis patients, and lowest in sera from the sarcoidosis and IPF patients. A significantly lower serum ACE activity was detected in the bird fanciers lung patients. Serum angiogenic activity of ILD patients measured by angiogenesis index negatively correlated with ACE serum activity (r = ;−0.52; p < 0.01). This correlation was highest in the sarcoidosis group (r = −0.6; p < ). Sera from ILD patient constitute the source of factors modulating angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoniou, K. M., Pataka, A., Bouros, D., & Siafakas, N. M. (2007). Pathogenetic pathways and novel pharmacotherapeutic targets in idiopathic pulmonary fibrosis. Pulmonary Pharmacology & Therapeutics, 20, 453–461.

    Article  CAS  Google Scholar 

  • ATS. (2000). Idiopathic pulmonary fibrosis: Diagnosis and treatment. International consensus statement. American Journal of Respiratory and Critical Care Medicine, 16, 646–664.

    Google Scholar 

  • ATS/ERS/WASOG. (1999). Statement on sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 160, 736–755.

    Google Scholar 

  • Brice, E. A., Friedlander, W., Bateman, E. D., & Kirsch, R. E. (1995). Serum angiotensin-converting enzyme activity, concentration, and specific activity granulomatous disease, tuberculosis and COPD. Chest, 107, 706–710.

    Article  PubMed  CAS  Google Scholar 

  • Carlesimo, M., Giustini, S., Rossi, A., Bonaccorsi, P., & Calvieri, S. (1995). Treatment of cutaneous and pulmonary sarcoidosis with thalidomide. Journal of the American Academy of Dermatology, 32, 866–869.

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimian, T. G., Tamarat, R., Diurez, C., Duriez, M., Levy, B. I., & Silvestre, J. S. (2005). Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 65–70.

    PubMed  CAS  Google Scholar 

  • Escobar, E., Rodríguez-Reyna, T. S., Arrieta, O., & Sotelo, J. (2004). Angiotensin II, cell proliferation and angiogenesis regulator: Biologic and therapeutic implications in cancer. Current Vascular Pharmacology, 2, 385–399.

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama, S., Matsubara, H., Nozawa, Y., Maruyama, K., Mori, Y., Tsutsumi, Y., Masaki, H., Uchiyama, Y., Koyama, Y., Nose, A., Iba, O., Tateishi, E., Ogata, N., Jyo, N., Higashiyama, S., & Iwasaka, T. (2001). Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circulation Research, 88, 22–29.

    Article  PubMed  CAS  Google Scholar 

  • Gately, S., Twardowski, P., Stack, M. S., Cundiff, D. L., Grella, D., Castellino, F. J., Enghild, J., Kwaan, H. C., Lee, F., Kramer, R. A., Volpert, O., Bouck, N., & Soff, G. A. (1997). The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proceedings of the National Academy of Sciences of the United States of America, 94, 10868–10872.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S., Steinbrech, D. S., Landas, S. K., & Hunninghake, G. W. (1993). Amounts of angiotensin-converting enzyme mRNA reflect the burden of granulomas in granulomatous lung disease. American Review of Respiratory Disease, 148(2), 483–486.

    PubMed  CAS  Google Scholar 

  • Gronhagen-Riska, C., Kurppa, K., Fyhrquist, F., & Selroos, O. (1978). Angiotensin-converting enzyme and lysozyme in silicosis and asbestosis. Scandinavian Journal of Respiratory Diseases, 59, 228–231.

    PubMed  CAS  Google Scholar 

  • Herr, D., Rodewald, M., Fraser, H. M., Hack, G., Konrad, R., Kreienberg, R., & Wulff, C. (2008). Potential role of renin-angiotensin-system for tumor angiogenesis in receptor negative breast cancer. Gynecologic Oncology, 109, 418–425.

    Article  PubMed  CAS  Google Scholar 

  • Hiller, K. H., Ruile, P., Kraus, G., Bauer, W. R., & Waller, C. (2010). Tissue ACE inhibition improves microcirculation in remote myocardium after coronary stenosis: MR imaging study in rats. Microvascular Research, 80, 484–490.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, N. (1991). Angiotensin converting enzyme: Implications from molecular biology for its physiological functions. The International Journal of Biochemistry, 23, 641–647.

    Article  PubMed  CAS  Google Scholar 

  • Ino, K., Shibata, K., Kajiyama, H., Nawa, A., Nomura, S., & Kikkawa, F. (2006). Manipulating the angiotensin system-new approaches to the treatment of solid tumors. Expert Opinion on Biological Therapy, 6, 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Keane, M. P. (2004). Angiogenesis and pulmonary fibrosis: Feast or famine? American Journal of Respiratory and Critical Care Medicine, 170, 207–209.

    Article  PubMed  Google Scholar 

  • Kozak, A., Ergul, A., El-Remessy, A. B., Johnson, M. H., Machado, L. S., Elewa, H. F., Abdelsaid, M., Wiley, D. C., & Fagan, S. C. (2009). Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke, 40, 1870–1876.

    Article  PubMed  CAS  Google Scholar 

  • Lacasse, Y., Selman, M., Costabel, U., Dalphin, J. C., Ando, M., Morell, F., Erkinjuntti-Pekkanen, R., Muller, N., Colby, T. V., Schuyler, M., Cormier, Y., & HP Study Group. (2003). Clinical diagnosis of hypersensitivity pneumonitis. American Journal of Respiratory and Critical Care Medicine, 168, 952–958.

    Article  PubMed  Google Scholar 

  • Lever, A. F., Hole, D. J., Gillis, C. R., McCallum, I. R., McInnes, G. T., MacKinnon, P. L., Meredith, P. A., Murray, L. S., Reid, J. L., & Robertson, J. W. (1998). Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? The Lancet, 352, 179–184.

    Article  CAS  Google Scholar 

  • Lieberman, J. (1975). Elevation of serum angiotensin converting enzyme (ACE) level in sarcoidosis. The American Journal of Medicine, 59, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, J., & Beutler, E. (1976). Elevation of serum angiotensin-converting enzyme in Gaucher’s disease. The New England Journal of Medicine, 294, 1442–1444.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, J., & Rea, T. H. (1977). Serum angiotensin-converting enzyme in leprosy and coccidioidomycosis. Annals of Internal Medicine, 87, 423–425.

    PubMed  CAS  Google Scholar 

  • Lovren, F., Pan, Y., Quan, A., Teoh, H., Wang, G., Shukla, P. C., Levitt, K. S., Oudit, G. Y., Al-Omran, M., Stewart, D. J., Slutsky, A. S., Peterson, M. D., Backx, P. H., Penninger, J. M., & Verma, S. (2008). Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1377–H1384.

    Article  PubMed  CAS  Google Scholar 

  • Mossman, B. T., & Churg, A. (1998). Mechanisms in the pathogenesis of asbestosis and silicosis. American Journal of Respiratory and Critical Care Medicine, 157, 1666–1680.

    PubMed  CAS  Google Scholar 

  • Patel, A., MacMahon, S., Chalmers, J., Neal, B., Woodward, M., Billot, L., Harrap, S., Poulter, N., Marre, M., Cooper, M., Glasziou, P., Grobbee, D. E., Hamet, P., Heller, S., Liu, L. S., Mancia, G., Mogensen, C. E., Pan, C. Y., Rodgers, A., & Williams, B. (2007). Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): A randomised controlled trial. The Lancet, 370, 829–840.

    Article  CAS  Google Scholar 

  • Raizada, M. K., & Ferreira, A. J. (2007). ACE2: A new target for cardiovascular disease therapeutics. Journal of Cardiovascular Pharmacology, 50, 112–119.

    Article  PubMed  CAS  Google Scholar 

  • Saaristo, A., Karpanen, T., & Alitalo, K. (2000). Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene, 19, 6122–6129.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez de Miguel, L., Neysari, S., Jakob, S., Petrimpol, M., Butz, N., Banfi, A., Zaugg, C. E., Humar, R., & Battegay, E. J. (2008). B2-kinin receptor plays a key role in B1-, angiotensin converting enzyme inhibitor-, and vascular endothelial growth factor-stimulated in vitro angiogenesis in the hypoxic mouse heart. Cardiovascular Research, 80, 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Sano, H., Hosokawa, K., Kidoya, H., & Takakura, N. (2006). Negative regulation of VEGF-induced vascular leakage by blockade of angiotensin II type 1 receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2673–2680.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, M. (2001). Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Structure and Function, 26, 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Sidky, Y. A., & Auerbach, R. (1975). Lymphocyte-induced angiogenesis: A quantitative and sensitive assay for the graft-versus-host reaction. The Journal of Experimental Medicine, 141, 1084–1100.

    Article  PubMed  CAS  Google Scholar 

  • Skopiński, P., Sommer, E., Borowska, A., Hevelke, A., Rogala, E., & Skopińska-Rozewska, E. (2001). Angiotensin-converting enzyme activity and angiomodulatory effects of sera in patients with diabetic retinopathy. International Journal of Clinical Pharmacology Research, 21, 73–78.

    PubMed  Google Scholar 

  • Tzouvelekis, A., Anevlavis, S., & Bouros, D. (2006). Angiogenesis in interstitial lung diseases: A pathogenetic hallmark or a bystander? Respiratory Research, 25(7), 82.

    Article  Google Scholar 

  • Wagner, E. J., Sanchez, J., McClintock, J. Y., Jenkins, J., & Moldobaeva, A. (2008). Inflammation and ischemia-induced lung angiogenesis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294, L351–L357.

    Article  PubMed  CAS  Google Scholar 

  • Westermann, D., Schultheiss, H. P., & Tschope, C. (2008). New perspective on the tissue kallikrein-kinin system in myocardial infarction: Role of angiogenesis and cardiac regeneration. International Immunopharmacology, 8, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B., Baker, A. Q., Gallacher, B., & Lodwick, D. (1995). Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension, 25, 913–917.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji, H., Kuriyama, S., & Fukui, H. (2002a). Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biology, 23, 348–356.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji, H., Kuriyama, S., & Fukui, H. (2002b). Perindopril: Possible use in cancer therapy. Anti-Cancer Drugs, 13, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji, H., Kuriyama, S., Noguchi, R., & Fukui, H. (2004). Angiotensin-I converting enzyme inhibitors as potential anti-angiogenic agents for cancer therapy. Current Cancer Drug Targets, 4, 555–567.

    Article  PubMed  CAS  Google Scholar 

  • Zambidis, E. T., Park, T. S., Yu, W., Tam, A., Levine, M., Yuan, X., Pryzhkova, M., & Péault, B. (2008). Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood, 112, 3601–3614.

    Article  PubMed  CAS  Google Scholar 

  • Zielonka, T. M., Demkow, U., Filewska, M., Białas, B., Korczynski, P., Szopinski, J., Soszka, A., & Skopinska-Rozewska, E. (2007a). Angiogenic activity of sera from interstitial lung diseases patients in relation to IL-6, IL-8, IL-12 and TNFα serum level. Central European Journal of Immunology, 32, 53–60.

    CAS  Google Scholar 

  • Zielonka, T. M., Demkow, U., Filewska, M., Golian-Geremek, A., Filewska, M., Zycinska, K., Bialas, B., Wardyn, K., & Skopinska-Rozewska, E. (2007b). TNFα and INFγ inducing capacity of sera from interstitial lung diseases patients in relation to its angiogenesis activity. Journal of Physiology and Pharmacology, 58(Suppl. 5), 767–780.

    PubMed  Google Scholar 

  • Zielonka, T. M., Demkow, U., Filewska, M., Radzikowska, E., Bialas, B., Filewska, M., Zycinska, K., Obrowski, M. H., Kowalski, J., Wardyn, K., & Skopinska-Rozewska, E. (2010). Angiogenic activity of sera from interstitial lung disease patients in relation to pulmonary function. European Journal of Medical Research, 15(Suppl. 2), 229–234.

    PubMed  Google Scholar 

Download references

Conflicts of interest: The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Zielonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zielonka, T.M. et al. (2013). Angiogenic Activity of Sera from Interstitial Lung Disease Patients in Relation to Angiotensin-Converting Enzyme Activity. In: Pokorski, M. (eds) Respiratory Regulation - The Molecular Approach. Advances in Experimental Medicine and Biology, vol 756. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4549-0_27

Download citation

Publish with us

Policies and ethics