Skip to main content

Exercise in Cold Air and Hydrogen Peroxide Release in Exhaled Breath Condensate

  • Conference paper
  • First Online:
Respiratory Regulation - The Molecular Approach

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 756))

Abstract

Athletes have changes in the lung epithelial cells caused by inhalation of cold and dry air. The exhaled breath condensate contains a number of mediators from the respiratory system and H2O2 is described as a marker of airways inflammation. The aim of this study was to determine the influence of exercise combined with cold air on the H2O2 release in the exhaled breath. Twelve males (23.1 ± 1.5 years) were randomly assigned at 2 different days (1 day rest) to perform a 50 min run (75–80% of their max. heart rate) under normal (N) laboratory (18.1 ± 1.1°C) or cold (C) field condition (−15.2 ± 3.1°C). Before and immediately after each run, the EBC was collected under laboratory conditions and was analyzed amperometrically. Prior to the two runs, H2O2 concentrations were 145.0 ± 31.0 (N) and 160.0 ± 49.1 nmol/L (C) and theoretical release was 70.3 ± 37.1 (N) and 82.6 ± 27.1 pmol/min (C) (p > 0.05). After each run, H2O2 concentration increased significantly to 388.0 ± 22.8 nmol/L (N) and 622.1 ± 44.2 nmol/L (C) (p < 0.05), along with an increase in the theoretical release: 249.2 ± 35.7 pmol/min (N) and 400.9 ± 35.7 pmol/min (C) (p < 0.05). We conclude that release of H2O2 into the EBC takes place under both resting conditions and after exercise. The concentration and release of H2O2 increased after exercise in cold air compared to resting and laboratory conditions, which points to an increase in inflammatory and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antczak, A., Nowak, D., Shariati, B., Krol, M., Piasecka, G., & Kurmanowska, Z. (1997). Increased hydrogen peroxide and thiobarbituric acid-reactive products in expired breath condensate of asthmatic patients. The European Respiratory Journal, 10, 1235–1241.

    Article  PubMed  CAS  Google Scholar 

  • Belda, J., Ricart, S., Casan, P., Giner, J., Bellido-Casado, J., Torrejon, M., Margarit, G., & Drobnic, F. (2008). Airway inflammation in the elite athlete and type of sport. British Journal of Sports Medicine, 42, 244–249.

    Article  PubMed  CAS  Google Scholar 

  • Bougault, V., Turmel, J., St-Laurent, J., Bertrand, M., & Boulet, L. P. (2009). Asthma, airway inflammation and epithelial damage in swimmers and cold-air athletes. The European Respiratory Journal, 33, 740–746.

    Article  PubMed  CAS  Google Scholar 

  • Carlsen, K. H. (2009). Asthma, airway inflammation and epithelial damage in elite athletes. The European Respiratory Journal, 33, 713–714.

    Article  PubMed  Google Scholar 

  • Conner, G. E., Salathe, M., & Forteza, R. (2002). Lactoperoxidase and hydrogen peroxide metabolism in the airway. American Journal of Respiratory and Critical Care Medicine, 166, S57–S61.

    Article  PubMed  Google Scholar 

  • Davis, M. S., Mckiernan, B., Mccullough, S., Nelson, S., Jr., Mandsager, R. E., Willard, M., & Dorsey, K. (2002). Racing Alaskan sled dogs as a model of “ski asthma”. American Journal of Respiratory and Critical Care Medicine, 166, 878–882.

    Article  PubMed  Google Scholar 

  • Dekhuijzen, P. N., Aben, K. K., Dekker, I., Aarts, L. P., Wielders, P. L., Van Herwaarden, C. L., & Bast, A. (1996). Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 154, 813–816.

    PubMed  CAS  Google Scholar 

  • Gerritsen, W. B., Zanen, P., Bauwens, A. A., Van den Bosch, J. M., & Haas, F. J. (2005). Validation of a new method to measure hydrogen peroxide in exhaled breath condensate. Respiratory Medicine, 99, 1132–1137.

    Article  PubMed  Google Scholar 

  • Heinicke, I., Boehler, A., Rechsteiner, T., Bogdanova, A., Jelkmann, W., Hofer, M., Rawlings, P., Araneda, O. F., Behn, C., Gassmann, M., & Heinicke, K. (2009). Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate. European Journal of Applied Physiology, 106, 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Helenius, I., Lumme, A., & Haahtela, T. (2005). Asthma, airway inflammation and treatment in elite athletes. Sports Medicine, 35, 565–574.

    Article  PubMed  Google Scholar 

  • Horvath, I., Donnelly, L. E., Kiss, A., Kharitonov, S. A., Lim, S., Chung, K. F., & Barnes, P. J. (1998). Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. American Journal of Respiratory and Critical Care Medicine, 158, 1042–1046.

    PubMed  CAS  Google Scholar 

  • Horvath, I., Hunt, J., Barnes, P. J., Alving, K., Antczak, A., Baraldi, E., Becher, G., Van Beurden, W. J., Corradi, M., Dekhuijzen, R., Dweik, R. A., Dwyer, T., Effros, R., Erzurum, S., Gaston, B., Gessner, C., Greening, A., Ho, L. P., Hohlfeld, J., Jobsis, Q., Laskowski, D., Loukides, S., Marlin, D., Montuschi, P., Olin, A. C., Redington, A. E., Reinhold, P., Van Rensen, E. L., Rubinstein, I., Silkoff, P., Toren, K., Vass, G., Vogelberg, C., & Wirtz, H. (2005). Exhaled breath condensate: Methodological recommendations and unresolved questions. The European Respiratory Journal, 26, 523–548.

    Article  PubMed  CAS  Google Scholar 

  • Karjalainen, E. M., Laitinen, A., Sue-Chu, M., Altraja, A., Bjermer, L., & Laitinen, L. A. (2000). Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. American Journal of Respiratory and Critical Care Medicine, 161, 2086–2091.

    PubMed  CAS  Google Scholar 

  • Kasielski, M., & Nowak, D. (2001). Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease. Respiratory Medicine, 95, 448–456.

    Article  PubMed  CAS  Google Scholar 

  • Knobloch, H., Becher, G., Decker, M., & Reinhold, P. (2008). Evaluation of H2O2 and pH in exhaled breath condensate samples: Methodical and physiological aspects. Biomarkers, 13, 319–341.

    Article  PubMed  CAS  Google Scholar 

  • Koskela, H. O. (2007). Cold air-provoked respiratory symptoms: The mechanisms and management. International Journal of Circumpolar Health, 66, 91–100.

    Article  PubMed  Google Scholar 

  • Larsson, K., Tornling, G., Gavhed, D., Muller-Suur, C., & Palmberg, L. (1998). Inhalation of cold air increases the number of inflammatory cells in the lungs in healthy subjects. The European Respiratory Journal, 12, 825–830.

    Article  PubMed  CAS  Google Scholar 

  • Loukides, S., Bouros, D., Papatheodorou, G., Lachanis, S., Panagou, P., & Siafakas, N. M. (2002). Exhaled H2O2 in steady-state bronchiectasis: Relationship with cellular composition in induced sputum, spirometry, and extent and severity of disease. Chest, 121, 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Marek, E., Platen, P., Volke, J., Muckenhoff, K., & Marek, W. (2009). Hydrogen peroxide release and acid-base status in exhaled breath condensate at rest and after maximal exercise in young, healthy subjects. European Journal of Medical Research, 14(Suppl 4), 134–139.

    PubMed  Google Scholar 

  • Marek, E. M., Volke, J., Hawener, I., Platen, P., Muckenhoff, K., & Marek, W. (2010). Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects. Journal of Breath Research, 4, 017105.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, D., Antczak, A., Krol, M., Pietras, T., Shariati, B., Bialasiewicz, P., Jeczkowski, K., & Kula, P. (1996). Increased content of hydrogen peroxide in the expired breath of cigarette smokers. The European Respiratory Journal, 9, 652–657.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, D., Kasielski, M., Pietras, T., Bialasiewicz, P., & Antczak, A. (1998). Cigarette smoking does not increase hydrogen peroxide levels in expired breath condensate of patients with stable COPD. Monaldi Archives for Chest Disease, 53, 268–273.

    PubMed  CAS  Google Scholar 

  • Nowak, D., Kalucka, S., Bialasiewicz, P., & Krol, M. (2001). Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. Free Radical Biology & Medicine, 30, 178–186.

    Article  CAS  Google Scholar 

  • Quanjer, P. H., Tammeling, G. J., Cotes, J. E., Pedersen, O. F., Peslin, R., & Yernault, J. C. (1993). Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. The European Respiratory Journal. Supplement, 16, 5–40.

    PubMed  CAS  Google Scholar 

  • Riediker, M., & Danuser, B. (2007). Exhaled breath condensate pH is increased after moderate exercise. Journal of Aerosol Medicine, 20, 13–18.

    Article  PubMed  Google Scholar 

  • Schleiss, M. B., Holz, O., Behnke, M., Richter, K., Magnussen, H., & Jorres, R. A. (2000). The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. The European Respiratory Journal, 16, 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • Sen, C. K. (2001). Antioxidant and redox regulation of cellular signaling: Introduction. Medicine and Science in Sports and Exercise, 33, 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Sue-Chu, M., Henriksen, A. H., & Bjermer, L. (1999). Non-invasive evaluation of lower airway inflammation in hyper-responsive elite cross-country skiers and asthmatics. Respiratory Medicine, 93, 719–725.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, S., Olin, A. C., Larstad, M., Ljungkvist, G., & Toren, K. (2004). Determination of hydrogen peroxide in exhaled breath condensate by flow injection analysis with fluorescence detection. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 809, 199–203.

    PubMed  CAS  Google Scholar 

  • Van Beurden, W. J., Harff, G. A., Dekhuijzen, P. N., Van den Bosch, M. J., Creemers, J. P., & Smeenk, F. W. (2002). An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate. Respiratory Medicine, 96, 197–203.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Marek .

Editor information

Editors and Affiliations

Additional information

Conflicts of interest: No conflicts of interest were reported in relation to this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Marek, E., Volke, J., Mückenhoff, K., Platen, P., Marek, W. (2013). Exercise in Cold Air and Hydrogen Peroxide Release in Exhaled Breath Condensate. In: Pokorski, M. (eds) Respiratory Regulation - The Molecular Approach. Advances in Experimental Medicine and Biology, vol 756. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4549-0_22

Download citation

Publish with us

Policies and ethics