Skip to main content

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 4))

Abstract

Modeling of memristor devices is essential for memristor based circuit and system design. This chapter presents a review of existing memristor modeling techniques and provides simulations that compare several existing models to published memristor characterization data. A discussion of existing models is presented that explains how the equations of each relate to physical device behaviors.

The simulations were completed in LTspice and compare the output of the different models to current–voltage relationships of physical devices. Sinusoidal and triangular pulse inputs were used throughout the simulations to test the capabilities of each model. The chapter is concluded by recommending a more generalized memristor model that can be accurately matched to several different published device characterizations. This generalized model provides the potential for more accurate circuit simulation for a wide range of device structures and voltage inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua LO, Leon O (1971) Memristor—The missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  2. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  PubMed  CAS  Google Scholar 

  3. Williams R (2008) How we found the missing memristor. IEEE Spectrum 45(12):28–35

    Article  Google Scholar 

  4. Raja T, Mourad S (2009) Digital logic implementation in memristor-based crossbars. International conference on communications, circuits, and systems, pp 939–943

    Google Scholar 

  5. Lehtonen E, Laiho M (2009) Stateful implication logic with memristors. IEEE/ACM international symposium on nanoscale architectures, pp 33–36

    Google Scholar 

  6. Wald S, Baker J, Mitkova M, Rafla N (2011) A non-volatile memory array based on nano-ionic conductive bridge memristors. IEEE workshop on microelectronics and electron devices, pp 1–4

    Google Scholar 

  7. Snider GS (2008) Cortical computing with memristive nanodevices. SciDAC Rev 10:58–65

    Google Scholar 

  8. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301

    Article  PubMed  CAS  Google Scholar 

  9. Oblea AS, Timilsina A, Moore D, Campbell KA (2010) Silver chalcogenide based memristor devices. IJCNN, pp 1–3

    Google Scholar 

  10. Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3:429–433

    Article  PubMed  CAS  Google Scholar 

  11. Miller K, Nalwa KS, Bergerud A, Neihart NM, Chaudhary S (2010) Memristive behavior in thin anodic titania. IEEE Electron Dev Lett 31(7):737–739

    Article  CAS  Google Scholar 

  12. Miller K (2010) Fabrication and modeling of thin-film anodic titania memristors. Master’s Thesis, Iowa State University, Electrical and Computer Engineering (VLSI), Ames

    Google Scholar 

  13. Yakopcic C, Taha TM, Subramanyam G, Pino RE, Rogers S (2011) A memristor device model. IEEE Electron Dev Lett 32(10):1436–1438 (Accepted for publication)

    Article  Google Scholar 

  14. Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30(661)

    Google Scholar 

  15. Laiho M, Lehtonen E, Russel A, Dudek P (2010) Memristive synapses are becoming reality, institute of neuromorphic engineering, the neuromorphic engineer, a publication of INE-WEB.org, 10.2417/1201011.003396. http://www.ine-news.org/view.php?source=003396-2010-11-26

  16. Pino RE, Bohl JW, McDonald N, Wysocki B, Rozwood P, Campbell KA, Oblea A, Timilsina A (2010) Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices. IEEE/ACM international symposium on nanoscale architectures, pp 1–4

    Google Scholar 

  17. Biolek Z, Biolek D, Biolková V (2009) Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2):210–214

    Google Scholar 

  18. Lehtonen E, Laiho M (2010, February) CNN using memristors for neighborhood connections, pp 1–4

    Google Scholar 

  19. Batas D, Fiedler H (2011) A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans Nanotechnol 10(2):250–225

    Article  Google Scholar 

  20. Rak A, Cserey G (2010, April) Macromodeling of the memristor in spice. Comput Aided Des Integr Circ Syst IEEE Trans 29(4):632–636

    Article  Google Scholar 

  21. Benderli S, Wey T (2009) On SPICE macromodelling of TiO2 memristors. Electron Lett 45(7):377–379

    Article  CAS  Google Scholar 

  22. Mahvash M, Parker AC (2010, August) A memristor SPICE model for designing memristor circuits. (MWSCAS), pp 989–992

    Google Scholar 

  23. Chang T, Jo SH, Kim KH, Sheridan P, Gaba S, Lu W (2011) Synaptic behaviors and modeling of a metal oxide memristor device. Appl Phys A 102:857–863

    Article  CAS  Google Scholar 

  24. Abdalla H, Pickett MD (2011) SPICE Modeling of Memristors. ISCAS, pp 1832–1835

    Google Scholar 

  25. Shin S, Kim K, Kang S-M (2010, April) Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans Comput Aided Des Integr Circ Syst 29(4):590–598

    Article  Google Scholar 

  26. Simmons JG (1963) Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34(6):1793–1803

    Article  Google Scholar 

  27. Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. J Appl Phys 106(7):074508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Yakopcic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E. (2012). Memristor SPICE Modeling. In: Kozma, R., Pino, R., Pazienza, G. (eds) Advances in Neuromorphic Memristor Science and Applications. Springer Series in Cognitive and Neural Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4491-2_12

Download citation

Publish with us

Policies and ethics