Skip to main content

Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions

  • Chapter
  • First Online:
Epistemology versus Ontology

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 27))

Abstract

Full intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from constructive Zermelo-Fraenkel set theory, CZF, by adding the full separation axiom scheme and the power set axiom. The strength of CZFplus full separation is the same as that of second order arithmetic, using a straightforward realizability interpretation in classical second order arithmetic and the fact that second order Heyting arithmetic is already embedded in CZFplus full separation. This paper is concerned with the strength of CZFaugmented by the power set axiom, \({\mathbf{CZF}}_{\mathcal{P}}\). It will be shown that it is of the same strength as Power Kripkeā€“Platek set theory, \(\mathbf{KP}(\mathcal{P})\), as well as a certain system of type theory, \({\mathbf{MLV}}_{\mathbf{P}}\), which is a calculus of constructions with one universe. The reduction of \({\mathbf{CZF}}_{\mathcal{P}}\)to \(\mathbf{KP}(\mathcal{P})\)uses a realizability interpretation wherein a realizer for an existential statement provides a set of witnesses for the existential quantifier rather than a single witness. The reduction of \(\mathbf{KP}(\mathcal{P})\)to \({\mathbf{CZF}}_{\mathcal{P}}\)employs techniques from ordinal analysis which, when combined with a special double negation interpretation that respects extensionality, also show that \(\mathbf{KP}(\mathcal{P})\)can be reduced to CZFwith the negative power set axiom. As CZFaugmented by the latter axiom can be interpreted in \({\mathbf{MLV}}_{\mathbf{P}}\)and this type theory has a types-as-classes interpretation in \({\mathbf{CZF}}_{\mathcal{P}}\), the circle will be completed.

MSC: 03F50, 03F35

Work on the ideas for this paper started while I was a fellow of SCAS, the Swedish Collegium for Advanced Study, in the period January-June 2009. SCAS provided an exquisite, intellectually inspiring environment for research. I am grateful to Erik Palmgren, Sten Lindstrƶm, and the people of SCAS for making this possible. Part of the material is also based upon research supported by the EPSRC of the UK through grant No. EP/G029520/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Curiously, Tharp calls this scheme Replacement.

  2. 2.

    The \({\Delta }_{0}^{\mathcal{P}}\)-formulae of DefinitionĀ 15.1.

References

  • Aczel, P. 1978. The type theoretic interpretation of constructive set theory. In Logic Colloquium ā€™77, ed. A. MacIntyre, L. Pacholski, and J. Paris. Amsterdam: Northā€“Holland.

    Google ScholarĀ 

  • Aczel, P. 1982. The type theoretic interpretation of constructive set theory: Choice prinicples. In The L.E.J. brouwer centenary symposium, ed. A.S. Troelstra and D. van Dalen. Amsterdam: Northā€“Holland.

    Google ScholarĀ 

  • Aczel, P. 1986. The type theoretic interpretation of constructive set theory: Inductive definitions. In Logic, methodology and philosophy science VII, ed. R.B. Marcus et al., 17ā€“49. Amsterdam: Northā€“Holland.

    Google ScholarĀ 

  • Aczel, P. 2000. On relating type theories and set theories. In Types ā€™98, Lecture notes in computer science, vol. 1257, ed. T. Altenkirch, W. Naraschewski, and B. Reus. Berlin: Springer.

    Google ScholarĀ 

  • Aczel, P., and M. Rathjen. 2001. Em notes on constructive set theory, Technical report 40, Institut Mittag-Leffler. Stockholm: The Royal Swedish Academy of Sciences. http://www.ml.kva.se/preprints/archive2000-2001.php

  • Aczel, P., and M. Rathjen. 2010. Constructive set theory, book draft.

    Google ScholarĀ 

  • Barwise, J. 1975. Admissible sets and structures. Berlin/Heidelberg/New York: Springer.

    Google ScholarĀ 

  • Beeson, M. 1985. Foundations of constructive mathematics. Berlin: Springer.

    BookĀ  Google ScholarĀ 

  • Chen, R.-M., and M. Rathjen. 2010. Lifschitz realizability for intuitionistic Zermelo-Fraenkel set theory, submitted.

    Google ScholarĀ 

  • Coquand, T. 1990. Metamathematical investigations of a calculus of constructions. In Logic and Computer science, ed. P. Oddifreddi, 91ā€“122. London: Academic.

    Google ScholarĀ 

  • Friedman, H. 1973a. Some applications of Kleeneā€™s method for intuitionistic systems. In Cambridge summer school in mathematical logic, Lectures notes in mathematics, vol. 337, ed. A.Ā Mathias and H. Rogers, 113ā€“170. Berlin: Springer.

    Google ScholarĀ 

  • Friedman, H. 1973b. Countable models of set theories. In Cambridge summer school in mathematical logic, Lectures Notes in Mathematics, vol. 337, ed. A. Mathias and H. Rogers, 539ā€“573. Berlin: Springer.

    Google ScholarĀ 

  • Friedman, H. 1973c. The consistency of classical set theory relative to a set theory with intuitionistic logic. Journal of Symbolic Logic38: 315ā€“319.

    ArticleĀ  Google ScholarĀ 

  • Feferman, S. 1979. Constructive theories of functions and classes. In Logic colloquium ā€™78, ed. M.Ā Boffa, D. van Dalen, and K. McAloon, 1ā€“52. Amsterdam: North-Holland.

    Google ScholarĀ 

  • Gambino, N. 1999. Types and sets: A study on the jump to full impredicativity, Laurea dissertation, Department of Pure and Applied Mathematics, University of Padua.

    Google ScholarĀ 

  • Lifschitz, V. 1979. CT0 is stronger than CT0! Proceedings of the American Mathematical Society73: 101ā€“106.

    Google ScholarĀ 

  • Lubarsky, R.S. 2006. CZF and second order arithmetic. Annals of Pure and Applied Logic141: 29ā€“34.

    ArticleĀ  Google ScholarĀ 

  • Mac Lane, S. 1992. Form and function. Berlin: Springer.

    Google ScholarĀ 

  • Martin-Lƶf, P. 1984. Intuitionistic type theory. Naples: Bibliopolis.

    Google ScholarĀ 

  • Mathias, A.R.D. 2001. The strength of Mac Lane set theory. Annals of Pure and Applied Logic110: 107ā€“234.

    ArticleĀ  Google ScholarĀ 

  • Moschovakis, Y.N. 1976. Recursion in the universe of sets, mimeographed note.

    Google ScholarĀ 

  • Moss, L. 1995. Power set recursion. Annals of Pure and Applied Logic71: 247ā€“306.

    ArticleĀ  Google ScholarĀ 

  • Myhill, J. 1975. Constructive set theory. Journal of Symbolic Logic40: 347ā€“382.

    ArticleĀ  Google ScholarĀ 

  • Normann, D. 1978. Set recursion. In Generalized recursion theory II, 303ā€“320. Amsterdam: North-Holland.

    Google ScholarĀ 

  • Palmgren, E. 1993. Type-theoretic interpretations of iterated, strictly positive inductive definitions. Archive for Mathematical Logic32: 75ā€“99.

    ArticleĀ  Google ScholarĀ 

  • Pozsgay, L. 1971. Liberal intuitionism as a basis for set theory, in Axiomatic set theory. Proceedings Symposium Pure Mathematics12(1): 321ā€“330.

    Google ScholarĀ 

  • Pozsgay, L. 1972. Semi-intuitionistic set theory. Notre Dame Journal of Formal Logic13: 546ā€“550.

    ArticleĀ  Google ScholarĀ 

  • Rathjen, M. 1994. The strength of some Martin-Lƶf type theories. Archive for Mathematical Logic33: 347ā€“385.

    ArticleĀ  Google ScholarĀ 

  • Rathjen, M. 2005. Replacement versus collection in constructive Zermelo-Fraenkel set theory. Annals of Pure and Applied Logic136: 156ā€“174.

    ArticleĀ  Google ScholarĀ 

  • Rathjen, M. 2006a. Choice principles in constructive and classical set theories. In Logic colloquium 2002, Lecture notes in logic, vol. 27, ed. Z. Chatzidakis, P. Koepke, and W. Pohlers, 299ā€“326. Wellesley: A.K. Peters.

    Google ScholarĀ 

  • Rathjen, M. 2006b. Realizability for constructive Zermelo-Fraenkel set theory. In Logic Colloquium 2003, Lecture notes in logic, vol. 24, ed. J. VƤƤnƤnen and V. Stoltenberg-Hansen, 282ā€“314. Wellesley: A.K. Peters.

    Google ScholarĀ 

  • Rathjen, M. 2006c. The formulae-as-classes interpretation of constructive set theory. In Proof technology and computation, Proceedings of the international summer school marktoberdorf 2003, ed. H. Schwichtenberg and K. Spies, 279ā€“322. Amsterdam: IOS Press.

    Google ScholarĀ 

  • Rathjen, M., and S. Tupailo. 2006. Characterizing the interpretation of set theory in Martin-Lƶf type theory. Annals of Pure and Applied Logic141: 442ā€“471.

    ArticleĀ  Google ScholarĀ 

  • Rathjen, M. 2011. An ordinal analysis of Power Kripkeā€“Platek set theory, Centre de Recerca MatemĆ tica Barcelona preprint series.

    Google ScholarĀ 

  • Rathjen, M. The weak existence property for intuitionistic set theories.

    Google ScholarĀ 

  • Rathjen, M., and A. Weiermann. 1993. Proof-theoretic investigations on Kruskalā€™s theorem. Annals of Pure and Applied Logic60: 49ā€“88.

    ArticleĀ  Google ScholarĀ 

  • Sacks, G.E. 1990. Higher recursion theory. Berlin: Springer.

    Google ScholarĀ 

  • Tharp, L. 1971. A quasi-intuitionistic set theory. Journal of Symbolic Logic36: 456ā€“460.

    ArticleĀ  Google ScholarĀ 

  • Thiele, E.J. 1968. Ɯber endlich axiomatisierbare Teilsysyteme der Zermelo-Fraenkelā€™schen Mengenlehre. Zeitschrift fĆ¼r Mathematische Logik und Grundlagen der Mathematik14: 39ā€“58.

    ArticleĀ  Google ScholarĀ 

  • Troelstra, A.S. 1998. Realizability. In Handbook of proof theory, ed. S.R. Buss, 407ā€“473. Amsterdam: Elsevier.

    ChapterĀ  Google ScholarĀ 

  • Troelstra, A.S., and D. van Dalen. 1988. Constructivism in mathematics, volumes I, II. Amsterdam: North Holland.

    Google ScholarĀ 

  • van Oosten, J. 1990. Lifschitzā€™s realizability. The Journal of Symbolic Logic55: 805ā€“821.

    ArticleĀ  Google ScholarĀ 

  • Wolf, R.S. 1974. Formally intuitionistic set theories with bounded predicates decidable. Ph.D. thesis, Stanford University.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rathjen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Rathjen, M. (2012). Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions. In: Dybjer, P., Lindstrƶm, S., Palmgren, E., Sundholm, G. (eds) Epistemology versus Ontology. Logic, Epistemology, and the Unity of Science, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4435-6_15

Download citation

Publish with us

Policies and ethics