Skip to main content

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

During the past five years, significant progress has been made in elucidating and delineating the geospace response to nonmigrating tides from the lower atmosphere. Satellite missions providing continuously and globally distributed measurements of the atmospheric parameters revealed astonishing findings not anticipated before. Special emphasis is put on the eastward propagating diurnal tide with zonal wavenumber 3 (DE3) which manifests itself not only in the neutral atmosphere but also in the ionosphere. The DE3 tide can be traced from its origin in the troposphere to its maximum in the mesosphere, lower thermosphere (MLT) region up to an altitude of 400 km. Thereby Hough Mode Extension (HME) modeling aids to bridge the data gap between satellite measurements performed in the MLT region and upper thermosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alken, P., & Maus, S. (2007). Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements. Journal of Geophysical Research, 112, A09305. doi:10.1029/2007JA012524.

    Article  Google Scholar 

  • Barth, C. A., Mankoff, K. D., Bailey, S. M., & Solomon, S. C. (2003). Global observations of nitric oxide in the thermosphere. Journal of Geophysical Research, 108(A1), 1027. doi:10.1029/2002JA009458.

    Article  Google Scholar 

  • Burrage, M., Vincent, R. A., Mayr, H. G., Skinner, W. R., Arnold, N. F., & Hays, P. B. (1996). Long-term variability in the equatorial mesosphere and lower thermosphere zonal wind. Journal of Geophysical Research, 101(D8), 12847–12854. doi:10.1029/96JD00575.

    Article  Google Scholar 

  • Doornbos, E., van den IJssel, J., Lühr, H., Förster, M., & Koppenwallner, G. (2010). Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. Journal of Spacecraft and Rockets, 47(4), 580–589. doi:10.2514/1.48114.

    Article  Google Scholar 

  • Ekanayke, E. M. P., Aso, T., & Miyahara, S. (1997). Background wind effect on propagation of nonmigrating diurnal tides in the middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 59(4), 401–429. doi:10.1016/S1364-6826(96)00012-0.

    Article  Google Scholar 

  • England, S. L., Maus, S., Immel, T. J., & Mende, S. B. (2006). Longitude variation of the E-region electric fields caused by atmospheric tides. Geophysical Research Letters, 33, L21105. doi:10.1029/2006GL027465.

    Article  Google Scholar 

  • England, S. L., Immel, T. J., Huba, J. D., Hagan, M. E., Maute, A., & DeMajistre, R. (2010). Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of equatorial ionosphere. Journal of Geophysical Research, 115, A05308. doi:10.1029/2009JA014894.

    Article  Google Scholar 

  • Fejer, B. G., Jensen, J. W., & Su, S.-Y. (2008). Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. Journal of Geophysical Research, 113, A05304. doi:10.1029/2007JA012801.

    Article  Google Scholar 

  • Forbes, J. M., & Hagan, M. E. (1982). Thermospheric extensions of the classical expansion functions for semidiurnal tides. Journal of Geophysical Research, 87(A7), 5253–5259. doi:10.1029/JA087iA07p05253.

    Article  Google Scholar 

  • Forbes, J. M., Zhang, X., Talaat, E. R., & Ward, W. (2003). Nonmigrating diurnal tides in the thermosphere. Journal of Geophysical Research, 108, 1033. doi:10.1029/2002JA009262.

    Article  Google Scholar 

  • Forbes, J. M., Russell, J., Miyahara, S., Zhang, X., Palo, S., Mlynczak, M., Mertens, C. J., & Hagan, M. E. (2006). Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. Journal of Geophysical Research, 111, A10S06. doi:10.1029/2005JA011492.

    Article  Google Scholar 

  • Forbes, J. M., Zhang, X., Palo, S., Russell, J., Mertens, M., & Mlynczak, C. J. (2008). Tidal variability in the ionospheric dynamo region. Journal of Geophysical Research, 113, A02310. doi:10.1029/2007JA012737.

    Article  Google Scholar 

  • Forbes, J. M., Bruinsma, S. L., Zhang, X., & Oberheide, J. (2009). Surface-exosphere coupling due to thermal tides. Geophysical Research Letters, 36, L15812. doi:10.1029/2009GL038748.

    Article  Google Scholar 

  • Hagan, M. E., & Forbes, J. M. (2002). Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. Journal of Geophysical Research, 107(D24), 4754. doi:10.1029/2001JD001236.

    Article  Google Scholar 

  • Hagan, M. E., & Forbes, J. M. (2003). Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. Journal of Geophysical Research, 108(A2), 1062. doi:10.1029/2002JA009466.

    Article  Google Scholar 

  • Hagan, M. E., & Roble, R. G. (2001). Modeling the diurnal tidal variability with the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. Journal of Geophysical Research, 106(A11), 24869–24882. doi:10.1029/2001JA000057.

    Article  Google Scholar 

  • Hagan, M. E., Maute, A., Roble, R. G., Richmond, A. D., Immel, T. J., & England, S. L. (2007). Connections between deep tropical clouds and the Earth’s ionosphere. Geophysical Research Letters, 34, L20109. doi:10.1029/2007GL030142.

    Article  Google Scholar 

  • Hagan, M. E., Maute, A., & Roble, R. G. (2009). Tropospheric tidal effects on the middle and upper atmosphere. Journal of Geophysical Research, 114, A01302. doi:10.1029/2008JA013637.

    Article  Google Scholar 

  • Häusler, K., & Lühr, H. (2009). Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Annales Geophysicae, 27, 2643–2652. doi:10.5194/angeo-27-2643-2009.

    Article  Google Scholar 

  • Häusler, K., & Lühr, H. (2011). Longitudinal variations of the thermospheric zonal wind induced by nonmigrating tides as observed by CHAMP. In M. A. Abdu, D. Pancheva & A. Bhattacharyya (Eds.), IAGA special sopron book series: Vol. 2. Aeronomy of the Earth’s atmosphere and ionosphere. Berlin: Springer. doi:10.1007/978-94-007-0326-1_25.

    Google Scholar 

  • Häusler, K., Lühr, H., Rentz, S., & Köhler, W. (2007). A statistical analysis of longitudinal dependences of upper thermospheric zonal winds at dip equator latitudes derived from CHAMP. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1419–1430. doi:10.1016/j.jastp.2007.04.004.

    Article  Google Scholar 

  • Häusler, K., Lühr, H., Hagan, M. E., Maute, A., & Roble, R. G. (2010). Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. Journal of Geophysical Research, 115, D00I08. doi:10.1029/2009JD012394.

    Article  Google Scholar 

  • Hays, P. B., Wu, D. L., Burrage, M. D., Gell, D. A., Grassl, H. J., Lieberman, R. S., Marshall, A. R., Morton, Y. T., Ortland, D. A., & Skinner, W. R. (1994). Observations of the diurnal tide form space. Journal of the Atmospheric Sciences, 51, 3077–3093. doi:10.1175/1520-0469(1994)051<3077:OOTDTF>2.0.CO;2.

    Article  Google Scholar 

  • Heelis, R. A. (2004). Electrodynamics in the low and middle latitude ionosphere: a tutorial. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 825–838. doi:10.1016/j.jastp.2004.01.034.

    Article  Google Scholar 

  • Huba, J. D., Joyce, G., & Fedder, J. A. (2000). Sami2 is Another model of the ionosphere (SAMI2): a new low-latitude ionosphere model. Journal of Geophysical Research, 105(A10), 23035–23053. doi:10.1029/2000JA000035.

    Article  Google Scholar 

  • Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., & Paxton, L. J. (2006). Control of equatorial ionospheric morphology by atmospheric tides. Geophysical Research Letters, 33, L15108. doi:10.1029/2006GL026161.

    Article  Google Scholar 

  • Jarvis, M. J. (2001). Bridging the atmospheric divide. Science, 293(5538), 2218–2219. doi:10.1126/science.1064467.

    Article  Google Scholar 

  • Jin, H., Miyoshi, Y., Fujiwara, H., & Shinagawa, H. (2008). Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. Journal of Geophysical Research, 113, A09307. doi:10.1029/2008JA013301.

    Article  Google Scholar 

  • Killeen, T. L., Wu, Q., Solomon, S. C., Ortland, D. A., Skinner, W. R., Niciejewski, R. J., & Gell, D. A. (2006). TIMED Doppler interferometer: overview and recent results. Journal of Geophysical Research, 111, A10S01. doi:10.1029/2005JA011484.

    Article  Google Scholar 

  • Lieberman, R. S., Oberheide, J., Hagan, M. E., Remsberg, E. E., & Gordley, L. L. (2004). Variability of diurnal tides and planetary waves during November 1978–May 1979. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 517–528. doi:10.1016/j.jastp.2004.01.006.

    Article  Google Scholar 

  • Lieberman, R. S., Riggin, D. M., Ortland, D. A., Nesbitt, S. W., & Vincent, R. A. (2007). Variability of mesospheric diurnal tides and tropospheric diurnal heating during 1997–1998. Journal of Geophysical Research, 112, D20110. doi:10.1029/2007JD008578.

    Article  Google Scholar 

  • Lin, C. H., Wang, W., Hagan, M. E., Hsiao, C. C., Immel, T. J., Hsu, M. L., Liu, J. Y., Paxton, L. J., Fang, T. W., & Liu, C. H. (2007). Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophysical Research Letters, 34, L11112. doi:10.1029/2007GL029265.

    Article  Google Scholar 

  • Lindzen, R. S., Hong, S. S., & Forbes, J. M. (1977). Semidiurnal Hough mode extensions in the thermosphere and their application (Memo. Rep. 3442). Nav. Res. Lab., Washington.

    Google Scholar 

  • Liu, H., Lühr, H., Watanabe, S., Köhler, W., Henize, V., & Visser, P. (2006). Zonal winds in the equatorial upper thermosphere: decomposing the solar flux, geomagnetic activity, and seasonal dependencies. Journal of Geophysical Research, 111, A07307. doi:10.1029/2005JA011415.

    Article  Google Scholar 

  • Liu, H., Yamamoto, M., & Lühr, H. (2009). Wave-4 pattern of the equatorial mass density anomaly: a thermospheric signature of tropical deep convection. Geophysical Research Letters, 36, L18104. doi:10.1029/2009GL039865.

    Article  Google Scholar 

  • Lühr, H., Häusler, K., & Stolle, C. (2007). Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophysical Research Letters, 34, L16102. doi:10.1029/2007GL030639.

    Article  Google Scholar 

  • Lühr, H., Rother, M., Häusler, K., Alken, P., & Maus, S. (2008). The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. Journal of Geophysical Research, 113, A08313. doi:10.1029/2008JA013064.

    Article  Google Scholar 

  • Lühr, H., Rother, M., Häusler, K., Fejer, B., & Alken, P. (2012). Direct comparison of non-migrating tidal signatures in the electrojet, vertical plasma drift and equatorial ionization anomaly. Journal of Atmospheric and Solar-Terrestrial Physics, 75–76, 31–43. doi:10.1016/j.jastp.2011.07.009.

    Article  Google Scholar 

  • McLandress, C., Shepherd, G. G., & Solheim, B. H. (1996). Satellite observations of thermospheric tides: results from the Wind Imaging Interferometer on UARS. Journal of Geophysical Research, 101(D2), 4093–4114. doi:10.1029/95JD03359.

    Article  Google Scholar 

  • Mlynczak, M., Martin-Torres, F. J., Russell, J., Beaumont, K., Jacobson, S., Kozyra, J., Lopez-Puertas, M., Funke, B., Mertens, C., Gordley, L., Picard, R., Winick, J., Wintersteiner, P., & Paxton, L. (2003). The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophysical Research Letters, 30(21), 2100. doi:10.1029/2003GL017693.

    Article  Google Scholar 

  • Oberheide, J., & Forbes, J. M. (2008a). Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophysical Research Letters, 35, L04816. doi:10.1029/2007GL032397.

    Article  Google Scholar 

  • Oberheide, J., & Forbes, J. M. (2008b). Thermospheric nitric oxide variability induced by nonmigrating tides. Geophysical Research Letters, 35, L16814. doi:10.1029/2008GL034825.

    Article  Google Scholar 

  • Oberheide, J., Hagan, M. E., & Roble, R. G. (2003). Tidal signatures and aliasing in temperature data from slowly precessing satellites. Journal of Geophysical Research, 108(A2), 1055. doi:10.1029/2002JA009585.

    Article  Google Scholar 

  • Oberheide, J., Wu, Q., Ortland, D. A., Killeen, T. L., Hagan, M. E., Roble, R. G., Niciejewski, R. J., & Skinner, W. R. (2005). Non-migrating diurnal tides as measured by the TIMED Doppler interferometer: preliminary results. Advances in Space Research, 35, 1911–1917. doi:10.1016/j.asr.2005.01.063.

    Article  Google Scholar 

  • Oberheide, J., Wu, Q., Killeen, T. L., Hagan, M. E., & Roble, R. G. (2006). Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: monthly climatologies and seasonal variations. Journal of Geophysical Research, 111, A10S03. doi:10.1029/2005JA011491.

    Article  Google Scholar 

  • Oberheide, J., Wu, Q., Killeen, T. L., Hagan, M. E., & Roble, R. G. (2007). A climatology of nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind data. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 2203–2218. doi:10.1016/j.jastp.2007.05.010.

    Article  Google Scholar 

  • Oberheide, J., Forbes, J. M., Häusler, K., Wu, Q., & Bruinsma, S. L. (2009). Tropospheric tides from 80 to 400 km: propagation, inter-annual variability, and solar cycle effects. Journal of Geophysical Research, 114, D00I05. doi:10.1029/2009JD012388.

    Article  Google Scholar 

  • Oberheide, J., Forbes, J. M., Zhang, X., & Bruinsma, S. L. (2011a). Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: what contributes to the “wave 4”? Journal of Geophysical Research, 116, A01306. doi:10.1029/2010JA015911.

    Article  Google Scholar 

  • Oberheide, J., Forbes, J. M., Zhang, X., & Bruinsma, S. L. (2011b). Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. Journal of Geophysical Research, 116, A11306. doi:10.1029/2011JA016784.

    Article  Google Scholar 

  • Park, J., Lühr, H., & Min, K. W. (2011). Climatology of the inter-hemispheric field-aligned current system in the equatorial ionosphere as observed by CHAMP. Annales Geophysicae, 29, 573–582. doi:10.5194/angeo-29-573-2011.

    Article  Google Scholar 

  • Ren, Z., Wan, W., Liu, L., & Xiong, J. (2011). Simulated longitudinal variations in the lower thermospheric nitric oxide induced by nonmigrating tides. Journal of Geophysical Research, 116, A04301. doi:10.1029/2010JA016131.

    Article  Google Scholar 

  • Roble, R. G. (1995). Energetics of the mesosphere and thermosphere. In R. M. Johnson & T. L. Killeen (Eds.), Geophys. monogr. ser.: Vol. 87. The upper mesosphere and lower thermosphere: a review of experiment and theory (pp. 1–21). Washington: AGU.

    Chapter  Google Scholar 

  • Roble, R. G. (1996). The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). In R. W. Schunk (Ed.), STEP handbook on ionospheric models (pp. 281–288). Logan: Utah State University.

    Google Scholar 

  • Roble, R. G., & Ridley, E. C. (1994). A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophysical Research Letters, 21, 417–420. doi:10.1029/93GL03391.

    Article  Google Scholar 

  • Russell, J. M., Mlynczak, M. G., Gordley, L. L., Transock, J., & Espin, R. (1999). An overview of the SABER experiment and preliminary calibration results. Proceedings - SPIE, 3756, 277–288. doi:10.1117/12.366382.

    Article  Google Scholar 

  • Sagawa, E., Immel, T. J., Frey, H. U., & Mende, S. B. (2005). Longitudinal structure of the equatorial anomaly observed by IMAGE/FUV. Journal of Geophysical Research, 110, A11302. doi:10.1029/2004JA010848.

    Article  Google Scholar 

  • Stolle, C., Manoj, C., Lühr, H., Maus, S., & Alken, P. (2008). Estimating the day time Equatorial Ionization Anomaly strength from electric field. Journal of Geophysical Research, 113, A09310. doi:10.1029/2007JA012781.

    Article  Google Scholar 

  • Svoboda, A., Forbes, J. M., & Miyahara, S. (2005). A space-based climatology of diurnal MLT tidal winds, temperatures and densities from UARS wind measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 67(16), 1533–1543. doi:10.1016/j.jastp.2005.08.018.

    Article  Google Scholar 

  • Ward, W. E., Oberheide, J., Goncharenko, L. P., Nakamura, T., Hoffmann, P., Singer, W., Chang, L. C., Du, J., Wang, D.-Y., Batista, P., Clemesha, B., Manson, A. H., Meek, C., Riggin, D. M., She, C.-Y., Tsuda, T., & Yuan, T. (2010). On the consistency of model and ground-based and satellite observations of tidal signatures: initial results from the CAWSES tidal campaigns. Journal of Geophysical Research, 115, D07107. doi:10.1029/2009JD012593.

    Article  Google Scholar 

  • Wu, Q., Ortland, D. A., Killeen, T. L., Roble, R. G., Hagan, M. E., Liu, H.-L., Solomon, S. C., Xu, J., Skinner, W. R., & Niciejewski, R. J. (2008). Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 2. Nonmigrating tide. Journal of Geophysical Research, 113, A05309. doi:10.1029/2007JA012543.

    Article  Google Scholar 

  • Xu, J., Smith, A. K., Liu, H.-L., Yuan, W., Wu, Q., Jiang, G., Mlynczak, M. G., Russell III, J. M., & Franke, S. J. S. J. (2009). Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). Journal of Geophysical Research, 114, D13107. doi:10.1029/2008JD011298.

    Article  Google Scholar 

  • Zhang, X., Forbes, J. M., & Hagan, M. E. (2010). Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating. Journal of Geophysical Research, 115, A06317. doi:10.1029/2009JA014898.

    Article  Google Scholar 

Download references

Acknowledgements

KH and HL thank E. Doornbos for recalibrating the CHAMP accelerometer data. KH thanks M. E. Hagan and A. Maute for the help with TIME-GCM. JO thanks J. M. Forbes for providing HMEs, and X. Zhang and S. L. Bruinsma for providing CHAMP neutral density tidal diagnostics. KH was supported by DFG CAWSES grants LU 446/9, LU 446/10 whose results are presented in Sects. 26.4 and 26.5. JO was supported by DFG CAWSES grants OB 299/2-1, OB 299/2-2, OB 299/2-3 whose results are presented in Sects. 26.2 and 26.3. RK was partly supported by DFG grant OB 299/2-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Häusler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Häusler, K., Oberheide, J., Lühr, H., Koppmann, R. (2013). The Geospace Response to Nonmigrating Tides. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_26

Download citation

Publish with us

Policies and ethics